
LIFELINES

The Software Magazine
$3.00 April 1983 Volume III, No. 11 (ISSN 0279-2575. usps 597-830)

giwimm

Boll

I1

H

■J-f

•fe

a

1

< i s

J

i '>
FF . ' . \ .><■•' ;<v.„;,F,- <>.•■' : >
i t 'r M • ■

$&'w ': W;. •.«

F ; ;
, „W■ x< wfes

K|JkWt’

3BEv
7.FF?

-■:.;v ; :;

I I■. 9

It* Now dBASE II is made easy with Quickcode by Fox &
Geller. QUICKCODE is a program generator, a computer program which writes com-
puter programs.

FAST AND SIMPLE
With QUICKCODE you can generate a customer database in 5 minutes. Its that

fast. All you have to do is draw your data entry form on the screen. It’s that simple!

J NO PROGRAMMING REQUIRED j
QUICKCODE writes concise programs to set up and maintain any type of

database. And the wide range of programs cover everything from printing mailing labels
and form letters, to programs that let you select records based on your own requirements.
There are even four new data types that are not available with dBASE II alone.

YOUR CONTROL
And since you work directly with your information at your own speed and

your own style, you maintain complete control. Telling your computer what to do has
never been so easy.

QUICKCODE, by Fox & Geller. Absolutely the most power-
ful program generator you’ve ever seen. Definitely the
easiest to use.

Ask your dealer for more information on QUICKCODE and all the other
exciting new products from Fox & Geller. FOX&GELLER

Fox & Gel le r , Inc. Dept. L IF 001 604 Market Street Elmwood Park, N.J. 07407 (201) 794-8883

QUICKCODE trademark of Fox & Geller, Inc
dBASE II is a trademark of Ashton Tate

LIFELINES

The Software Magazine
Publisher: Edward H. Currie
Production Manager: Harold Black
Art and Design Manager: Kate Gartner
Operations: Carolann Abrams
Typographer: Harold Black
Software Consultant: Susan Sawyer

Managing Editor: Susan Sawyer
New Versions Editor: Lee Ramos
Technical Editor: Al Bloch
Advertising Manager: Carolann Abrams
Cover: K. Gartner
Printing Consultant: Sid Robkoff/E&S Graphics

Editorial
2 Editorial

Edward H. Currie

Features
3 A Review of the

Spellbinder Word Processor
Walt Jung

22 A Review of Wordix, A Text Formatter
Ron Watson

25 Sliding into BDOS (Part III)
Michael Karas

Product Status Reports

12 Z80 Tutorial —
Jumps, Calls, and Returns —
Controlling the Z80’s Program
Counter

Kim West DeWindt

15 RECLAIM.Com
Reviewed by Robert P. VanNatta

36 New Products

37 New Versions

37 Bugs

Miscellaneous

17 A Review of Microshell —
A Unix Like Utility

Bruce N. Hunter

34 Kibits

Copyright © 1983, by Lifelines Publishing Corporation. No portion
of this publication may be reproduced without the written
permission of the publisher. The single issue price is $3.00 for
copies sent to destinations in the U.S., Canada, or Mexico. The
single issue price for copies sent to all other countries is $4.30. All
checks should be made payable to Lifelines Publishing
Corporation. Foreign checks must be in U.S. dollars, drawn on a
U.S. bank; checks, money order, VISA, and MasterCard are
acceptable. All orders must be pre-paid. Please send all
correspondence to the Publisher at the address below.

Program names are generally TMs of their authors or owners. The CP/M Users Group is not
affiliated with Digital Research, Inc.
Lifelines - TM Lifelines Publishing Corp.
The Software Magazine - TM Lifelines Publishing Corp.
SB-80, SB-86 - TMs Lifeboat Associates.
CP/M and CP/M-86 reg. TMs, Access Manager, PLI-80, PLI-86, Pascal MT, MP/M, TMs of Digital
Research Inc.
BASIC-80, MBASIC, Fortran 80 - TMs Microsoft, Inc.
KIBITS - TM Bess Garber
Wordmaster & WordStar - TMs MicroPro International Corp.
PMATE - TMs Phoenix Software Associates, Ltd.
Z80 - TM Zilog Corporation
Mr. Edit - TM Micro Resources Corp.
MINCE -TM, Markof the Unicorn.

Lifelines (ISSN 0279-2575, USPS 597-830) is published monthly at
a subscription price of $24 for twelve issues, when destined for the
U.S., Canada, or Mexico, $50 when destined for any other country.
Second-class postage paid at New York, New York, and other' loca-
tions. POSTMASTER, please send changes of address to Lifelines
Publishing Corporation, 1651 Third Ave., New York, N.Y. 10028.

pinion _____________
Editorial Comments Edward H. Currie

ware engineering environment". If
you are interested in the traveling
classes in C or workshops in UNIX
and advanced C topics, contact Plum
Hall for the schedule. There are addi-
tional publications available as well,
so ask for them when inquiring
about the seminar. There is one par-
ticularly disturbing development in
the C world and that has to do with
documenting of C source code. The
casual collector of public domain C
source may in fact successfully com-
pile, link, and yes Ladies and Gentle-
men, even run such programs.
The problem arises because of the
tendency to use "include" state-
ments for external function calls.
Often the external functions have
been modified over time in ways
which are not consistent with the
various programs which might call
the function. It's not at all unusual to
find either at compile time or link
time that some external function or
routine is nowhere to be found. This
is particularly distressing when you
discover that some files provided
with submit programs won't com-
pile. Typically there is no discussion
of external functions or CRL files
which are needed to successfully
compile, link and execute C pro-
grams.

Come on fellas, how about a little
more attention to detail and a little
better documentation in source and
documentation files as to what is
needed to use the many exciting pub-
lic programs available in C.

The integrated packages such as
Context MBA and "123" by Lotus
continue to get the lion's share of the
attention of the trade press as evi-
denced by the exhibits at the West
Coast Faire. These packages, while
well designed, are not likely to con-
tinue to dominate the market's atten-
tion for long, however. The micro-
computer has far too great a potential
to end up with such restrictive soft-
ware. The future for micros lies in the
areas of data movement, i.e. telecom-
munications, and data manipulation,

(continued on page 35)
Lifelines/TheSoftware Magazine, April 1983

Form Over Substance...
And Substance Over Form ...

Recent computer shows in San Fran-
cisco reflect the fact that heavy at-
tendance at such shows does not in
and of itself imply that such extrava-
ganzas are commercially worth-
while.

Vendors at the recent West Coast
Computer Faire, which has been
thought to be something of an insti-
tution, were overheard complaining
about the type of potential customers
who turned out for this show. Soft-
ware and hardware discounters
abounded and booths were filled to
their capacities with show attendees
wielding joysticks. An auctioneer
bellowed in the background as peo-
ple pawed through boxes of inte-
grated circuits, cables, etc.
The Heathkit booth was packed with
spectators looking for the Hero,
Heath's entry into the robot market.
However the units had been hauled
away for a seminar and when they
finally did appear they were under
the purview of Heath salesmen who
preferred the sounds of their own
voices to demonstrating what the
thundering hordes had waited for in
vain. The highlight of one such
presentation occurred when the
Heath representative demonstrated
that Hero knew the time (if you
typed in enough stuff on the integral
keyboard).
The oldtimers at the show roamed
the aisles in a futile search for some
new hardware or software innova-
tion. Instead what they found was
that the West Coast Faire had degen-
erated into the West Coast Arcade
Game Show!!!

Book vendors were also there in
strength and featured a number of
books on Ada and some new offer-
ings on UNIX. We'll review some of
these in future editorials.
Anyway it's becoming clearer why
Jim Warren is looking to sell his inter-
est in the show. The bytes are on the
wall. NCC is also losing its grip and
has been largely replaced by COM-

DEX as the important show for mi-
crocomputers. Long live COMDEX!!!
PC World Day at the West Coast Faire
culminated in the most fantastic
party this industry has seen to date.
The trend towards such lavish par-
ties was begun by Microsoft and
seems to grow with each show. A
number of fine seminars and panels
were sponsored by PC World and
may well represent the only signifi-
cant contribution of such shows
other than bringing the various
members of the industry into close
proximity.

The second edition of PC World is
out and this publication is well on its
way to establishing new standards in
microcomputer publications. David
Bunnell has done it again for the
third time!!! Its available at the news-
stand so pickup a copy ... you'll be
pleased.

As mentioned in last month's column
Kathy McMahon has graciously
agreed to provide a monthly column
for those of you just entering micro-
computerdom. She's on vacation this
month but her first column will ap-
pear in the May issue of the Software
Magazine. Watch for it. It's one col-
umn which can be read by all of us
each month. Her charter is to give
away all the secrets!!!

There's a rather interesting new book
out on the C language that you
should consider for addition to your
library. As you know C is rising in as-
cendancy in the celestial hemisphere
of microcomputerdom as THE lan-
guage of the future. "Learning to
Program in C" by Thomas Plum is
published by Plum Hall, 1 Spruce
Avenue, in Cardiff, New Jersey
08232. (609-927-3770)

Interestingly enough this particular
treatment is completely self-con-
tained and used as the basis for a
course given throughout the United
States. This text is a tutorial amd not
the typical reference text on C.
Plum's stated intent is "to give you
the information you need to be a
competent programmer in a real soft-

Feature A Review of the
Spellbinder Word Processor

Walt Jung
ing, only full-fledged word process-
ing programs do all three, and are
optimized for such. Differences in
exactly how and to what degree a
given package realizes these criteria
are what separates different pro-
grams. With the highly competitive
world of today's CP/M-based word
processors, some very powerful pro-
grams exist for the micro, many of
them featuring additional bell-and
whistle capabilities such as spelling
checkers, merged printing capability,
macro ability, indexing, footnoting,
etc. In reality, many of them are actu-
ally program families, involving a ser-
ies of related modules which work in
concert with the main program.
Sometimes the set is available as a
one price package, sometimes it is
not, so comparisons must be made
carefully here.

This review will focus on the three
basic capabilities of word processing;
editing, formatting and printing, and
will discuss how the Spellbinder
package realizes these requirements,
since it is these functions that are
common to other comparably equip-
ped word processors. The additional
options available with Spellbinder
are treated as well.

Installation:
Installing Spellbinder is relatively
easy, as the distribution disc comes
with a COM file already configured
for your hardware as well as a
healthy assortment of ready to go
macros (see Listing 1). Here, the file
HSB.COM is a self-patching version
of SB for the Heath environment,
and when called, prompts you with a
series of questions to select either the
standard keyboard or function keys,
row/column numbering (on/off),
printer type, and help guides
(on/off). Custom keytops are
available, if desired.

After completion of the menu you
enter the program, and are told to
"SAVE nnn SB.COM" on exit. The
"nnn" varies from 102 to 110, depend-

(continued on next page)
3

Introduction:
This review is on the Lexisoft, Inc.
word processing and office manage-
ment system, Spellbinder (a trade-
mark of Lexisoft, Inc.). The program
is available for a wide variety of 8 bit
CP/M-80 microcomputers, as well as
in 16 bit CPM-86 and MSDOS for-
mats, for the IBM PC and ZDOS for
the Zenith Z-100. The version of the
program reviewed here is 5.12, as
configured for a Heath/Zenith
H/Z-89. Table I summarizes the pro-
gram's particulars.
My experience with Spellbinder
began in the fall of 1981, when I was
looking for a powerful CP/M word
processor to replace a previously
used program. I needed full support
of the Diablo printer's capabilities for
my technical writing, and the fact
that Spellbinder was available con-
figured for the H-89 and included the
macro features, as well as effective
screen editing and printing, sold me
on it. The original version was V5.04,
which I later upgraded to V5.12 in
mid 1982. V5.12 added some addi-
tional macros, an improved com-
mand structure, a type-ahead buffer,
an improved help system, a potent
CP/M-like command mode, and mis-
cellaneous less obvious enhance-
ments.
For those unfamiliar with this pro-
gram, I would like to make a point
that Spellbinder is not likely to be
suitable for a novice computer user,
or anyone without some familiarity
with word processors.

This is simply because the program is
extremely powerful not only in terms
of editing, but printing as well, as it
literally makes a letter quality printer
do all the tricks. If these two factors
are not sufficiently intimidating,
throw in the macro programming
features, and you can overwhelm
many of us. And that's the point: it
takes more than the average technic-
al skill to realize the full potential of
this program, and all of its features.
There are no menus to hold your

hand, you wing-it free form, and the
commands have options on options.
If you don't like them, you can even
write your own!
Having used the program for a
length of time, I find that the tenden-
cy towards being overwhelmed does
dissipate after use. The nicely chosen
defaults let even the less experienced
manage, without the problem of
choosing variables, and, once the
commands are mastered, you may
find the program useful not only for
word processing, but also assembly
language text editing. Spellbinder is
not highlighted as such, but I find it
quite useful, with the rigorous
search/replace, read-and-insert
functions, at arbitrary cursor loca-
tions. The print-to-file function
makes nicely-formatted CP/M-list-
able ASCII files (with tame high bits,
too).

What does a word
processor do?
Before jumping into the discussion
on Spellbinder, it is appropriate to
consider what functions a word pro-
cessing package is expected to do.
With such a frame of reference, we
can compare with more meaning one
versus another, and weigh overall
which one best suits a particular
need.
Given the background of Ward
Christensen's series of text editor-
reviews, Lifelines readers are already
familiar with most of the general text
editing criteria. However, an editor is
not simply an editor when it comes
to word processing, even if we
restrict the discussion to full screen
editors. A word processor, to be truly
termed such, includes not only the
screen editor necessary for fast and
efficient text entry and editing, but
also the ability to format documents
for printing, and finally, to print the
document.

Thus, while all editors edit to various
degrees, and most can also imbed
format commands for external print-

Lifelines/The Software Magazine, Volume III, Number 11

ing upon your options. Thus the
resulting fully configured COM file
will be 26K or more; the smaller ver-
sions will yield more work space, of
course, and other machine versions
of SB.COM will vary in size. You'll
want to keep the help guides initially,
and later re-configure the program if
and when they are not necessary to
gain memory. Programmers can eas-
ily further customize Spellbinder
with the IOS.ASM file, which allows
customized screen prompts, key-
board and terminal configurations,
and printer drivers. Spellbinder sup-
ports three different general classes
of printer: device 0 is a precision or
letter quality unit, device 1 is a dot
matrix unit (ASCII and ESC charac-
ters), while device 2 is a CP/M LST:
device (ASCII only). All are select-
able from within the program, and
may be SAVEd as default configura-
tions.

Documentation:
The documentation which comes
with Spellbinder is divided into a
number of loose-leaf sections: a pull-
out 73-page tutorial manual, a quick
reference command summary sec-
tion, a general reference section, a
macro feature section, a peripheral
interfacing section, and a section on
how to write your ownmacros, called
"M-Speak Programming'. The table
of contents indicates general access
to specific broad topics, but the man-
ual is not indexed. Both the main
manual and the tutorial sub-manual
are testimonials to Spellbinder's
print capabilities, since they employ
such features as L/R page number-
ing, footers and headers, all inter-
spersed with standard boldface, just-
ification, underscore etc., and the
unique Spellbinder 2 column print
macro, driving a Sanders typograph-
ic quality printer.

Mechanics aside, however, the con-
tent and arrangement of thedocu-
mentation I would say is better than
average. The tutorial manual begins
by bringing up the program, and
leads through text entry and editing,
the command mode, disk opera-
tions, formatting, and printing.
Screen examples are used, and the
commands are explained in context.
The tutorial section will be most use-
ful to the beginner; once some de-
gree of familiarity is gained, the gen-

eral reference section is likely to be
used, and the quick reference very
often.
While no command summary refer-
ence card is supplied with Spell-
binder, the program has a good bal-
ance of help available. Integral to the
COM file are optional 3 line com-
mand summaries, for both COM-
MAND and EDIT modes, which
serve as on-screen reminders for less
experienced users. If not desired, the
help summaries can be toggled off. If
more detailed help is desired, the HE
command can be used to read in any
of the detailed help files from disc.
(Note that this command can also
read in any text file, and is one way to
check a disc file for content, without
exitting from the program.) My only
gripe of a serious nature with regard
to the documentation is that the
manual is not indexed, so it is diffi-
cult to find a specialized topic.

Using the program:
Once configured for your system,
when called Spellbinder signs on
with the version number, your serial
number, and copyright notice,
prompting you to hit any key. Strik-
ing any key other than ESC at this
point enters you directly into the
EDIT mode, ready for text entry. The
ESC key is (here) a file recovery com-
mand, which will retrieve from
memory a file just previously active,
after a crash. You'll only have to use
this feature once to love it; it will bail
you out from re-entering text which
would otherwise be gone forever.
Spellbinder has two distinct operat-
ing modes, the COMMAND mode
and the EDIT mode. The COM-
MAND mode is for I/O related com-
mands, printing, macros,
search/replace operations and the
larger scale operations in general.
The EDIT mode is primarily for text
keyboard entry and general editing.
However many commands overlap
between COMMAND and EDIT
modes, by use of both control and
ESC character sequences. There are
no menus for either the COMMAND
or EDIT modes to select a given com-
mand, such as for example with
Wordstar. Some may view this as a
lack of friendliness, but program-
mers are apt to like this stand-on-
your-own-feet approach. It won't
hold your hand, and you alone deter-

mine how much of the inherent
power you realize from the program.
In both main modes, the top-screen
status line gives the current cursor
position by line and column, and the
currently operational mode is indi-
cated by either a leftmost EDIT or
COMMAND:. For example, listing 2
illustrates the EDIT mode screen,
with the two Help lines at the bot-
tom. These 3 line displays summar-
ize the EDIT mode control character
commands (1ST set (top)), and the
ESC commands (2ND set (bottom)).
The underscored characters appear
in reverse video on the screen.
Listing 3 shows the COMMAND
mode screen, with the main Help
line illustrated. Entering any of the
numbers shown from the COM-
MAND: prompt fans out to further
Help lines, with further detail on the
individual commands (not shown).
When a COMMAND mode com-
mand is executed, the Help lines
dynamically prompt you for input;
drive, FILENAME.TYP, etc. (Nice!).
As can be noted, this system detracts
little from the screen workspace, and
if so desired, the help displays can be
toggled off (HEO command). De-
tailed help is available from disc, if
desired (HE command).
For EDIT mode text entry, Spell-
binder operates continuously in a
wordwrap mode with overtype, and
stores word processing files as con-
tinuous ribbons of text, with para-
graphs delimited by hard carriage
returns (CP/M CR/LF pair). Within
paragraphs, individual lines are de-
limited with soft CR's, in the form of
control N's for end-of-line. While this
makes Spellbinder word processing
files non-printable from CP/M, they
may also be written to disc with an
optional switch (/I) for CP/M com-
patibility. (Don't do this if you plan to
edit later, though, as you will then
need to remove the CR/LF's!)
With this scheme of operating, Spell-
binder files are easily manipulated
for any desired print format. Unlike
some word processors, Spellbinder
prints from memory, not disc. Once a
document has been formatted as de-
sired, it can be immediately printed,
even without saving to disc (not a
good habit, however, so don't take
this observation as a suggestion).
Details of formatting and printing are
covered below, under printing.

Lifelines/TheSoftware Magazine, April 19834

Rin will read and insert "n" lines at a
cursor position. The limit of "n" is
250 lines.
The above discussions cover files
which fit entirely in memory. With a
64K system, the amount of work-
space Spellbinder allows is on the
order of 25K, so it behooves one to
use all RAM possible. For files larger
than memory, disk buffering is used,
with a write file being opened for the
edited file. As the file is entered into
memory, the remaining workspace
RAM is shown on the display. (The
"M" command may also be used to
check remaining memory at any
time, from the COMMAND mode.)
The file handling for larger-than-
memory files is automatic only in the
sense that Spellbinder recognizes
the need for it, and prompts you for a
write filename when asked to read
the larger than memory file. Seg-
ments of the file are read in sequen-
tially, edited, then written out with
the G command. This is a one way
operation, and what has been writ-
ten can't be retrieved and further
edited, except by finishing the opera-
tion and restarting.

This method of larger than memory
file handling is, as noted, uni-direc-
tional, and it can be a real source of ir-
ritation, if you are used to the trans-
parent disc buffering available with
editors using swap files. My feeling
regarding the oversized files is that
the operation(s) should be made
transparent, to allow such files to be
manipulated with the same degree of
ease and flexibility as in-memory
files. This would hopefully include
file naming and I/O, where the com-
bination of features is actually one of
Spellbinder's strong suits. (Note:
Discussions with Lexisoft indicated
that some changes in this area are
being considered.)

Spellbinder has a built-in disk direc-
tory, which sizes the files and reports
the total disc file usage in terms of ac-
tual usage (not blocks allocated). The
directory is not sorted, which pro-
vides more than a small problem of
confusion with high capacity disks,
even 8" double density. There is no
means to do a selective directory, just
all or none. Fortunately, there is a
way around these limitations, which
is covered below. Files can also be
deleted from disk, but they cannot be

(continued on next page)
5

memory, less the size of the file being
edited.
Search/replace in Spellbinder is one
of the more impressive aspects of the
program. It can be a simple search
and find, queried search and replace,
as well as an automatic search and
replace. Commands can be either
stacked or interactive, and operable
on text in memory only, or the entire
file (including disc). Modifiers to the
syntax allow search/removal, string
modifiers for whole words and case,
or both, as well as wildcard searches
for ? characters, numbers, non-num-
bers and non-letters.
File manipulation with Spellbinder
is generally well handled in almost
all regards. Files are not necessarily
opened, until you wish to read in
previous text, or write out just en-
tered or edited test, and you cannot
exit the program with files open.
Writing to a previously used FILE-
NAME.TYP will create an automatic
backup (FILENAME.BAK), and a
second write bumps the first BAK file
(the originally named file). A write to
the same filename need not be ex-
plicitly named; if you wish the same
name, the "/" command will auto-
matically use the correct name, and
handle the housekeeping. An abort-
ed write to a full disc does not dump
your keystrokes to oblivion; it just
provides a calm error message. Discs
can be changed while in the pro-
gram; one simply logs in a new disc
by doing a directory, after which I/O
may be performed.

Writing out a file can be from any cur-
sor positon, and by "n" lines or all
text, and multiple writes to the same
file are even possible. A conventional
(complete) file write is via W/WD
(write/write done) which writes out
the entire file with the cursor at the
top, and closes it. The text remains in
memory for another write if desired.
If no further work on the text is de-
sired, it can be written out and
cleared from memory with the GD
command. In either case, you stay in
the program.

Reading files from disc can be either
complete via the R command, or in
terms of "n" lines, via Rn. If text is
already in memory, the new text goes
at the end of the first. Alternately, an
RI command can read and insert a
file at an arbitrary cursor position, or

A file under work is displayed in the
COMMAND and EDIT modes
showing the line length by hard car-
riage returns, where present. For ex-
ample, listing 4 illustrates a sample
CP/M ASCII file, where the “<" char-
acter represents the CR/LF pairs in
the file. Were this a Spellbinder word
processing file type, the various <'s
within the paragraph would not be
present, and the file itself would
have soft CR's in their place, which
do not show on-screen. This allows
easy editing, and relining to any line
length. If and when you should need
to edit standard (ASCII) files, with
the displayed (real) CR's, you always
know the length of your lines.

Commands
Spellbinder has a very powerful
command set, and many of the com-
mands are functional from both
COMMAND and EDIT modes. Fur-
ther, COMMAND mode commands
can not only be stacked, but also
written into macros. This discussion
will briefly summarize most of the
major commands between COM-
MAND and EDIT; macros are dis-
cussed separately.

COMMAND mode commands
In the COMMAND mode, Spell-
binder has commands related to cur-
sor movement and/or editing, print-
ing, and file I/O. Since printing com-
mands are also discussed under that
section, just those commands related
to printing already formatted text
will be discussed here.
Editing-related commands concern
cursor movement, deletion, block
moves, and search/replace opera-
tions. Cursor movement can be for-
ward or backward in the file, to a
mark or to the end of file, or by "n"
lines. Deletions can be from the cur-
sor position to end of file, zzn"lines, or
all text. The potentially catastrophic
forms employ prompting, like
ZZREALLY?(Y/N)." Block definition is
from the cursor position to a mark, to
end of file, or "n" lines, with move-
ment into a hold buffer. Attempts to
write to a non-empty buffer result in
a prompt, before the buffer can be
updated. The held block can then be
re-inserted one or "n" times, at any
cursor position in text. The hold buf-
fer itself is size limited only by the
computer's available workspace

Lifelines/The Software Magazine, Volume III, Number 11

renamed or copied. (There is some
question in my mind whether the lat-
ter two really are necessary of a word
processor, as they seem more system
utilities.)

Printing in Spellbinder is always
from memory, allowing just entered
text to be printed immediately. The P
command prints one page, Pn "n"
lines, and PA the entire file in mem-
ory. PG will print an entire file, from
disc.
A variation of the print command I
find extremely valuable is ZPO Z,
which is the print-to-disc command.
This provides a CP/M compatible
ASCII file, which can be listed later
with PIP or any comparable CP/M
utility. The Y table must be set for
LST: device, and the print features of
such a device are supported, includ-
ing space justification, underscore,
boldface, etc.

The final COMMAND mode com-
mand discussed is one of the more
powerful, and the one I feel puts
Spellbinder in a unique class. This is
a CP/M-like command mode, from
within the program, called by 'Cl'.
From this mode, any CP/M COM file
(20k or less) on the A: drive can be
executed, such as STAT or PIP or your
favorite directory program, you
name it. The ostensible reason for
this feature is to allow the companion
program "Spellcheck" to be exe-
cuted, without leaving Spellbinder.
Of course "any COM file below 20K"
allows other stand-alone spelling
checkers to be used, as well.

However, the power of this com-
mand is that it gives you a CP/M com-
mand line without program exit or
loss of text. This not only gets around
the lack of directory flexibility men-
tioned earlier, but also greatly en-
hances the program's capability.
However, parameters cannot be eas-
ily passed from the command line
(ie, enter PIP for the "*" prompt, not
PIP B:fil.l=C:fil.2), and when exit-
ing this mode, your default drive will
be A: (if different previously).

EDIT mode commands

The EDIT mode commands are high-
ly terminal dependent, as would be
expected from different keyboards
and function key setups, from mach-
ine to machine. However, even in a
given version, such as the Heath,
one has a choice of using either the

standard keyboard, or the special
function key set. Any system using
Spellbinder with the H89 or H19 is
very much enhanced in operation by
activating the function keys, as other-
wise virtually all commands are con-
trol characters.
In the EDIT mode, text is entered
continuously, with wordwrap. For
insertion of new text the INSERT
mode (an EDIT sub-mode) breaks
away text below the cursor, and
allows additional text to be append-
ed from the break onward. Toggling
INSERT back restores the text to con-
tinuous, including the newly insert-
ed material. A quirk of Spellbinder
which I do not care for is that it will
not allow you to move backwards
from the current line, while in
INSERT. The screen defaults to 79
columns, but can be lined to other
widths, and it will then show the
width via a dotted vertical line. Hori-
zontal scrolling is supported in the
EDIT mode, for lines up to 159 char-
acters. The screen will automatically
rewrite as the line entered passes 80
characters, and indicate the left (or
right) screen display by a 11 (or 12) on
the line counter.
Cursor movement in Spellbinder's
EDIT mode is very flexible, as it can
be both forward or backward, and by
character, mark, word, sentence or
paragraph. The cursor mode is dis-
played on the status line, as in listing
2, which shows the default WORD
mode. The cursor can also be moved
up and down with the cursor arrows
(or tK, tj). The cursor can also be
SCANed, from the line extreme left
to right, with alternate SCAN key-
stokes. Repeat is via the REPEAT key
for the H89, or tR (standard key-
board).
Similar to the cursor movement in
terms of flexibility are the EDIT mode
deletions, which are also by charac-
ter, mark, word, sentence and para-
graph, from the cursor position. The
paragraph deletion is prompted, but
there is no "oops!" key function for
any mode, so new users should be
careful.

'Enhancement" in Spellbinder is a
dynamic change in a print character,
according to enhance character text
toggles, and the special character en-
try in the Y table. This can enable un-
derscore, boldface, shadow, etc. En-
hancement may be entered into text

in a number of ways. One of these is
by a toggle which starts enhance-
ment, with subsequent typed char-
acters enhanced as long as desired,
after which the toggle is turned off.
Or, another flexible way is to use
mode enhance, which enhances
from the cursor position by the cur-
rent mode. This is obviously the
quicker way for existing text, partic-
ularly with the function keys used.
Both these methods highlight the en-
hanced portions of the text on
screen.

While screen rewrites are automatic-
ally done by Spellbinder as required,
the screen can be manually re-writ-
ten with the cursor at the top with the
REWRITE command. Paging back-
ward or forward in text is done with
the PREV and NEXT SCREEN com-
mands, but these commands are not
preemptive. This can slow things up
and be a distraction. There is no true
line-by-line scroll capability per se,
and this would be a desirable addi-
tion.

TAB settings are defaulted to 8
spaces, but can be set as desired, and
decimal TABs are supported as well
(TABs are changed as desired with
the COMMAND mode "Z" com-
mand). A powerful complement to
the standard TAB function is IN-
DENT, which indents the current
line to the next TAB stop.

The mark character used by Spell-
binder is the "t" character, which
means it can be imbedded in text (its
function), but it will not (normally)
print. If desired, it can be forced to
print with an enhancement tech-
nique.

The above described commands are
executable either via control charac-
ters on a standard keyboard, or the
function keys on the H89/H19 (and
other terminals). They are summar-
ized in Listing 5, with the under-
scored characters displayed en-
hanced (on screen).

In addition to the above commands,
the EDIT mode also overlaps a num-
ber of COMMAND mode com-
mands, by the use of the ESC key,
followed by a single letter. For exam-
ple, ESC T and ESC E put the cursor
at the top and end of file, while ESC
H and ESC U hold and unhold, and
ESC F and ESC B go forward and
back to a mark. Note that although

Lifelines/TheSoftware Magazine, April 19836

In addition to the Y and YT table,
Spellbinder also supports simple
DOT commands such as .c = center,
.r = remark, .e = FF, .h for headers, .t
= vertical TAB, and so on. Along
with these dot commands, Spell-
binder also supports inline com-
mands, which can be placed any-
where on a line. The mark character
is the most obvious example, but
there are a number of others, for
super and sub script (both of these
can be nested), firm hyphen,
enhancement, absolute TAB (allows
vertical alignment under proportion-
al print mode), line tweaker, and
printer control sequences.

A good number of the inline com-
mands dynamically modify the one
or more Y table entries, which ex-
tends flexibility even further. For ex-
ample, there are commands for the
change of the special character, the
font, the line spacing, and the ribbon
color. This allows powerful changes,
even within individual words. There
is even a "user defined" section in
the IOS.ASM file, where one can
write custom controls, and there is a
user alterable space table.

For optimum control of word breaks
and print appearance, Spellbinder
has 3 kinds of hyphens: hard, soft,
and firm, and two kinds of print for-
mats: line and character oriented.
The character oriented format uses
the Y table entry for line width and
will break lines only between words,
a hard or soft hyphen, or condition-
ally, a firm hyphen. It is the generally
preferred routine, particularly for
justified text. The line oriented rou-
tine prints according to the line
width set on the screen, and thus
actual printed length depends upon
this, and the letters used.

Printwise, a hard hyphen will always
print, whenever it occurs. A soft
hyphen (with the line routine) is
used for wordbreaks if needed, and
will print. Under the character mode,
it will not print mid-line. A firm hy-
phen is used only with the character
print routine, and will print if it oc-
curs at the end of the line. Hyphena-
tion can be one of the trickier parts of
printing and formatting, but with the
screen preview feature and prompt-
ed hyphen help, it is manageable and
yet flexible

(continued on next page)

The first two entries on the menu
cannot actually be altered dynamic-
ally by the Y table as shown at the
top, but are manually selected when
you set the program up. The menu is
brought up from the COMMAND
mode by a "Y" command for altering
the Y table. The printer type can be
any of three shown; the normal
default is 2, but I use device 0. The
destination is the assignment where
your printer lives for your computer
(10 for Heath). Once these two para-
meters are set, you should SAVE the
version on exit, to avoid the necessity
of reset whenever the program is re-
called. You can of course SAVE multi-
ple versions for different printers and
port assignments, such as a dot
matrix for drafts, a letter quality for
final copy, etc.

The remaining entries in the table are
set by walking through the menu (a
CR = skip), and keying in the change
desired. Many of these parameters
are generally familiar, but some are
unique. The print routine entry, for
example, allows printing to be done
either by the editing assigned line
length, or by character. The latter is
more useful, and when used the
printed line length maximum will be
equal to LINE WIDTH. MAX and
MIN set the spacing between words,
for right justification. Characters per
inch is set by CHAR SIZE; from 0 =
8CH/inch, up to 3 = 15 CH/inch.
Line spacing is via LF SIZE; from 0 =
3L/inch, up to 3 for 8L/inch. The
SPEC CHAR is the selected character
corresponding to a type of enhance-
ment, which is toggled on-off, by an
in-line text character pair for the
enhancement.

The most powerful feature of this
approach to formatting lies in its flex-
ibility. Here, flexibility is a term
which applies not only to the range
of control menu selectable, but more
so in the sense that Y (and YT) state-
ments can be imbedded within the
file by a simple "FY" (or "FT') com-
mand. This allows a Y table to be
altered line by line if necessary, and
later recalled from disc, along with
the document. The Y and YT tables
(and other formatting commands)
are dynamically read by the program
with the text, and the entire re-for-
matting process is transparent to the
user.

there is apparent overlap, it is not re-
dundancy, as key strokes are elimin-
ated by avoiding the requirement to
go to COMMAND from the EDIT
mode, then back again.

Printing
Before actual printing, a document
can be previewed for correct format-
ting using the print-to-screen feature
of Spellbinder. This shows special
characters such as underscore, bold-
face, etc. with highlighting, format-
ted line spacing, right justification
(LST: device), and page breaks.
While the display is not precisely like
the actual final type (for display lim-
itation reasons), it is a workable
approximation, and prevents wast-
ing actual printing. This preview
function has built-in checks for suit-
able hyphenation, and will prompt
you to correct errors as they are need-
ed. Simply stated, if the file being
formatted passes the preview test, it
will print. This test can be either vis-
ual as described (V), in memory (J),
on only one page, the entire file in
memory, or the entire file including
disc.
Formatting text with Spellbinder is
similar in one sense to many
editor/formatters, in that it uses line
leading-period "dot commands'.
However, that is a little like saying all
beers are made with hops - - it
doesn't tell much about how they
taste! Spellbinder uses a single dot
command string for most of the
formatting commands, called the
"Y" table. This Y table is in the form
of .Y nl n2, etc., with the period the
first character of the line, to suppress
printing. In addition, there is a
related title/page format table, or YT
table. The main Y table controls the
major printing format functions,
while the YT table controls titling,
headers, footers, L/R page
numbering, etc.

Listing 6 shows both the sample Y
table itself (top), and also the menu
by which the parameters are selected
(bottom), with the defaults I use.
Because of the defaults, one can actu-
ally use Spellbinder without ever re-
ferring to or altering the Y (or YT)
tables. But, since that would shut off
much of the power, it behooves the
user to become comfortable with
their use.

Lifelines/The Software Magazine, Volume III, Number 11

Obviously one of the major deter-
minants of print appearance is how
the space between words is handled
under right justification. With Spell-
binder, justification can be either in-
cremental character spacing with an
ordinary printer, or with a precision
type, proportional in increments of
1/120". Further, the maximum and
minimum limits on the distributed
inter-word spacing allow good uni-
formity of text appearance, from line
to line.
The total combination of printing
support and range of control varia-
bles is most likely unique to Spell-
binder, and will even drive a Sanders
typographic printer (the manual is
an example). Unfortunately, there is
enough that could be said on print-
ing to fill a small book, let alone a
review, so we'll summarize by saying
that you are not likely to be disap-
pointed by the print capabilities of
Spellbinder, once you've mastered
them.

README.ART

Art Description File
Table I Facts and figures TABLE1.WS
Listing 1 Distribution files LISTING1.WS
Listing 2 EDIT screen LISTING2.WS
Listing 3 COMMAND screen LISTING3.WS
Listing 4 COMMAND screen w/text LISTING4.WS
Listing 5 EDIT command keys LISTING5.SB (HC)
Listing 6 Y table LISTING6.WS
Listing 7 Line number macro demo HARD COPY
Listing 8 2 column print demo HARD COPY

TABLE 1
Facts & Figures

Program Package:
Spellbinder Version 5.12; Word processing and Office
Management System

Supplier:
Lexisoft, Inc.
PO. Box 267
Davis, California

Suggested Retail Price:
$495.

Operating Systems:
8 bit CP/M-80, OASIS, MP/M

16 bit CP/M-86, MSDOS, ZDOS

Memory Requirements:
48k (minimum), 56k practical

Disc Requirements:
1 drive, 150k or more

Disc Formats:
8" standard, plus a variety of 5"

Systems supported:
Televideo 910/920/950, Zentec, Adds Viewpoint, Volker Craig,
Heath/Zenith Z-19 (89), TRS-80 II, Cromenco, Hazeltine, Interbute,
Soroc (all CP/M-80)
IBM PC (MSDOS, CP/M-86)

File Package:
Self patching COM file, IOS.ASM for customization, 13 macro programs,
help file, terminal specific DOC file, sample macro files

Documentation:
Complete manual in binder, subdivided into 5 sections

Printer Support:
ASCII only (LST:), dot-matrix, precision (Diablo, Qume, NEC), and
typographic quality (Sanders)

Macros
As mentioned above, COMMAND
mode commands can be entered in
'stacked' form in Spellbinder, to cre-
ate some quite powerful functions.
Spellbinder calls such commands
'Autocommands'. An autocommand
is defined as a sequence of com-
mands, entered on one command
line.
Simple and obvious examples of
such stacking might be "T/W/WD"
(go to top of file, open file for write,
write out entire file in memory and
close file). This one will do just that,
after you answer the prompt for a file
name. Another would be
"H2/B10/D5/U" which holds two
lines, goes back 10 lines, deletes 5,
and inserts the previously held 2
lines.
Prefix an autocommand with the
modifier 'n' for 'n' 1executions (up to
250), and you have a macro. Any
number of commands can be
stacked, as long as they don't exceed
one line length, and the autocom-
mand executes upon a CR.
Intervention can be used within an
autocommand, by inserting 71/'
which will cause Spellbinder to
prompt you. A good example is a
multiple print command, "3 P/T/I"
which will print 3 copies, but with

Lifelines/TheSoftware Magazine, April 19838

pauses between them, to allow you
load new paper.

You can define your own macro, by
use of the COMMAND mode "AT',
which will place entered text from
the cursor position into the macro
buffer. For example, if you key in the
sequence "S//*t", (where t is the CR),
then place the cursor over "S",and do
an AT, you have a mini-macro which
prints a *. Strike the CONTINUE key
in either EDIT or COMMAND
modes, and you repeat the macro
operation. Do an "A40" from the
COMMAND mode, and you have a
line of 40 *'s.
To edit the macro, do an AT to recall
it, modify, then an AT again to move
it back to the macro buffer. Edit to a
'S63//*//S//4/4', and you have a mini-
macro which prints a line of *'s, with
terminating CR.
Obviously, these short examples are
rather trivial, but they are purposely
chosen to illustrate how close macro
writing is to stacked commands.
These two mini-macros are in fact
just stacked commands, but they are
functional, and could be saved to
disc as a macro, with a file type of
'WPM'.
Loading a disc macro is done with
the command ZADZ, and the entry of
the macro name. This loads the mac-
ro, and starts execution. A macro fin-
ished execution remains in the buf-
fer, until changed by a new AD com-
mand, or edited via AT. It can be re-
executed (once) by the command %
or "n" times by the command 'An';
or, once (also) by the CONTINUE
key, as mentioned.
The manual devotes 10 pages to
much more detail of the macro pro-
gramming language, which can be
quite a powerful tool in the hands of
an experienced programmer, as
many custom utilities can be imple-
mented. An M-speak programming
manual is separately available for $25.
The Spellbinder package comes with
13 macros, which are ready to load
and excute (see Listing 1, *. WPM).
These macros are designed around a
variety of office tasks, and enhance
the utility of the word processor
quite considerably. As the names im-
ply, there are macros for file line
numbering (useful for legal drafts),
forms creation and fill-in, boiler plat-
ing, batch printing, sorting, merging
of data lists into letters for mailing,
addition of columns and rows of

(continued on next page)
9

£
£

£
£

£
£

£

AUTOLF .TAB
BOILER .WPM
CUESORT WPM
HELP .HEP
INVOICE .TEM
LETTER .TEM
ORDER .TEM

£
£

£
£

£
£

£
£

ALPHA .WPM
BOILER .LET
COL .A
HEATH89.DOC
INSTALL .WPM
LETTER .DEM
MOVEIT .WPM

C
O

ADDTT .WPM
BOILER .A
CALC3 .WPM
FORMS .WPM
HTIOS12B.ASM
KPHRASE.WPM
MMERGE .WPM
SPACE .TAB

2CPRNT .WPM
BATCH .WPM
CALC .SMP
CUSLIST .DEM
HSB .COM
KEYS .A
LINENB .WPM
PCONTROL.TAB

Drive B, user 0 contains 160K in 31 files with 266K free

Listing 1: Spellbinder V5.12 distribution files

EDIT L 0001 C 001 *WORD*

t
24 lines high (with help lines)
I

insert(E) indent(Y) cursor(HJKLS) Prev(G) Next(V) Dtab(Z) COMMAND(Q)
mode: change(O) forw(F) back(B) delt(D) enhance(U) Clear(C) 2ND SET(ESC)

/ 2ND SET(ESC)
Unhold Hold Top End Next Page Prev Indent clear Back Forward

Listing 2: Spellbinder EDIT mode screen with Help lines [1ST (top) 2ND (bot)]

COMMAND: L0001 C001 *WORD*

t
24 lines high (with help lines)
I

1: Disk 2: Search 3: Move/Delete 4: Print 5: Tables Exit(X) Help(HE)

Listing 3: Spellbinder COMMAND mode screen with Help line

COMMAND: L0001 C001 *WORD*
Installation

Installing Spellbinder is relatively easy, as the distribution discCcomes
with a COM file already configured for your hardware in general, as well as a
healthy assortment of ready to go macros (see listing 1). Here, the
file<HSB.COM is a self patching version of SB for the Heath environment,
and when<called, prompts you with a series of questions to select either the
standard<keyboard or function keys, row/column numbering (on/off),
printer type, and<help guides (on/off).<

Listing 4: Spellbinder COMMAND mode screen with sample text
(no Help line)

Lifelines/The Software Magazine, Volume III, Number 11

numbers, a calculator, a key phrase
locator, columnar movement, and
2-column printing. Install is a
configuration macro, necessary for
some of the others.

Two of the macros demonstrate the
utility of the language, in printing
tasks. The LINENB macro is shown
in Listing 7, and numbers each of the
lines to be printed, with all of the nor-
mal Spellbinder formatting possible
(shadow print shown here). The
2CPRNT macro is shown in Listing 8,
printing the same file, but in a 2 col-
umn format. These (and other) mac-
ros have configuration menus, which
prompt you for parameters, and
allow formatting to be optimized for
the specific task.

Support:
Experience with regard to support of
the program has been good. My
dealer, Ray Massa of Studio Comput-
ers (999 South Adams, Birmingham
MI, 48011) has always been helpful
answering questions, as has Perry
Gee and his staff, at Lexisoft.
Licensed holders of Spellbinder may
update older versions of the program
to a new revision, by returning the
distribution disc with $50.

Summary:
In summary, I would have to say that
anyone looking for a powerful word
processor package should consider
Spellbinder, qualified in light of your
own intended usage and general ex-
perience with word processors. If
you are comfortable with free-form
commands, it could well suit you.
But, if you are used to the environ-
ment of menu driven systems, it is
not likely to be your cup of tea.

While the review comments on the
program's learning difficulty are
largely intended to warn against the
assumption that use might be trivial,
it cannot be too hard, as my teenage
son Mark uses it proficiently, for term
papers! I have used it for countless
letters, my latest book (IC Tinier Cook-
book, 2nd Edition), as well as many
articles over the last year or so.

Compared to some other currently
available packages, it seems that two
function(s) not presently supported
in Spellbinder V5.12 are indexing
and footnoting. Since the field is
such a competitive one, it should not

STANDARD CONTROL SET:

MOVE CURSOR »> LEFT(H) DOWN(J) UP(K) RIGHT(L) SCAN(S)

MODE EDITING »> FORW(F) BACK(B) DELT(D) ENHANCE(U) CHANGE(O)

INSRTZCLS(E) INDENT(Y) SOFTHYP(N) REPEAT(R) DEC TAB(Z)

DELETE (DEL) CLEAR(C) REWTOP(T) ENTER ENH(W) MARK(X)

HEATH/ZENITH FUNCTION KEY SET:

fl -INDENT
f2- SOFT HYP
f3-MODE ENHANCE
f4- ENTER ENH
f5-PREV SCREEN
ERASE -NEXT SCREEN
BLUE - CONTINUE
RED -MARK
WHITE -REW

CHANGE UP DELT

LEFT SCAN RIGHT

MODE BACK DOWN MODE FORW

EDIT/COMMAND DEC TAB INSRT/CLS

Listing 5: H/Z89 EDIT mode command set.

,Y 1 90 110 2 0 1 0 65 2 2 1 0 30 7}-Note: Begins with "" used to print!

PRINTER TYPE 0
DESTINATION 10
PRINT ROUTINE 1 __
PRINT LENGTH 90
FORM LENGTH 110
PAGE EJECT 2
LEFT INDENT 0
SPACING 1
JUSTIFICATION 0
LINE WIDTH 65
LINE FEED SIZE 2
CHARACTER SIZE 2
SPECIAL CHAR 1
PROPORTIONAL 0
MAXIMUM SPACE 30
MINIMUM SPACE 7

precision(O) dot matrix(l) system(2)
default printer(O)
line oriented(O) char oriented(l)
length of printed text (90 = 9 in.)
length of paper (110 = 11 in.)
stop each page(0) space(l) form feed(2)
indent from left margin in tenths
single space(l) double(2) triple(3)
left(O) right just(l) center(2) right(3)
print width (65 = 6.5 in)
6 per inch(2) 8 per inch(3)
pica(l) elite(2)
shadow(0) underline(l) bold(4)
fixed pitch(0) proportional(l)
set for hyphenation check

Listing 6: Spellbinder Y table with defaults (top), and menu (bottom)

be long before such features are con-
sidered standard items for word pro-
cessors, and they will likely be con-
sidered in the next release.

The review has not treated 16 bit ver-
sions of the program, which should
offer healthy bonuses of speed, with
the other general characteristics as
noted. This will enhance overall
operation, as well as the execution of
some the macros, which (on my

2mHz H89), are slow. Similar com-
ments of relative improvement
would apply to the higher speed Z80
processors, in CP/M-80.

Editors and word processors do tend
to become quite personal attach-
ments with heavy use, and we all
tend to become comfortable with one
of them over others. In actual prac-
tice, there is no such thing as the per-
fect editor or word processor; they all

Lifelines/TheSoftware Magazine, April 1983io

to be a very powerful word process-
ing tool, and a highly useful one.
Hopefully, the detailed comments of
this review will communicate wheth-
er or not it can also become that, for
you. I can be reached for questions
and comments in care of Lifelines, or
via modem at the BHEC RCPM,
(301)-661-4447.

strophic to me, nor have they totally
resisted bypass. However, I can (for
example) appreciate the possibility of
a new user becoming frustrated with
the larger-than-memory file hand-
ling, as it is simply difficult to use. It
is highly important that any software
tool used intensively be both com-
fortable and efficient, otherwise it
becomes a burden, not a boon. In an
overall sense, I consider Spellbinder

have weaknesses and tradeoffs, to
one degree or another. There are very
few absolutes or panaceas in the real
world, but there certainly are such
things as poor decisions, arising out
of incomplete understanding of the
various programs.
Spellbinder has some areas of per-
formance which could be improved,
as are noted in the text. Of these
weaknesses, none have been cata-

1 : Installing Spellhinder is relatively easy, as the distribution disc
2: comes with a COM file already configured for your hardware in general, as well
3: as a healthy assortment of ready to go macros (see listing 1). Here, the file
4: HSB.COM is a self patching version of SB for the Heath environment, and when
5: called, prompts you with a series of questions to select either the standard
6: keyboard or function keys, row/co lumn numbering (on/off), printer type, and
7: help guides (on/off).

L i s t i ng 7: Line number macro demo
Installing SpeDhmder is relatively

easy, as the distribution disc comes with a
COM file already configured for your
hardware in general, as well as a healthy
assortment of ready to go macros (see listing
1). Here, the file HSB.COM is a self patching

L i s t i ng 8: 2 column p r in t demo

version of SB for the Heath environment, and
when called, prompts you with a series of
questions to select either the standard
keyboard or function keys, row/column
numbering (on/off), printer type, and help
guides (on/off). H

BackResf
Hard Disk

Backup,
Restore
and more!

NO PROBLEM. WE'VE BEEN X
USING BACKREST WE LL)

JUST RESTORE IT.
~7 BACKREST INTELLIGENTLY
(BACKS UP ANY HARD DISK TO
(FLOPPY DISKSAND ALLOWS

'PROF EASY •>
WE LOST THE
MASTER FILE'

Version 2 For Z-80, CP/M (1.4 & 2.x),
& NorthStar DOS Users

The complete professional software system, that meets
ALL provisions of the FORTH—79 Standard (adopted Oct.
1980). Compare the many advanced features of FORTH-
79 with the FORTH you are now using, or plan to buy!
FEATURES OURS OTHERS
79-Standard system gives source portability. YES
Professionally written tutorial & user manual. 200 PG.
Screen editor with user-def inable controls. YES
Macro-assembler with local labels. YES
Virtual memory. YES
BDOS, BIOS & console control functions (CP/M). YES
FORTH screen files use standard resident

file format. YES
Double-number Standard & String extensions. YES
Upper/lower case keyboard input. YES
APPLE I l/l l+ version also available. YES
Affordable! $99.95
Low cost enhancement options;
Floating-point mathematics YES
Tutorial reference manual
50 functions (AM9511 compatible format)

Hi-Res turtle-graphics (NoStar Adv. only) YES

• Incremental and Full backup.
• True copying of random files.
• Split large files if necessary.
• Migrate or delete selected files.
• Automatically restore bad files.
• Print Management reports.
• Requires CP/M 2.2, CP/M 3 or MP/M.

[Si $99.95 SEl
Order Toll-Free!
800/431-1953 ext 183

m NY 800 / 942-1935 ext 183FORTH-79 V.2 $99.95
ENHANCEMENT PACKAGE FOR V.2:

Floatingpoint $ 49.95
COMBINATION PACKAGE (Base & Floating point) $139.95

(advantage users add $49.95 for Hi-Res)
(CA. res, add 6% tax; COD & dealer inquiries welcome)

Stok Software Inc.

17West17thSt.
New York, NY
10011
212 / 243-1444MicroMotion

12077 Wilshire Blvd. # 506
L.A..CA 90025 (213)821-4340
Specify APPLE, CP/M or Northstar
Dealer inquiries invited.

CP/M - MP/M are trademarks of Digital Research

(continued on next page)
11Lifelines/The Software Magazine, Volume III, Number 11

Feature Z80 Tutorial - Jumps, Calls, and
Returns — Controlling the Z80’s
Program Counter ______________

Kim West DeWindt
value. The Z80 instruction set not only includes this type
of jump (a direct jump), it adds a short form of the instruc-
tion (the relative jump). A direct jump replaces the cur-
rent value of the PC with a sixteen bit value that is con-
tained in the instruction. A relative jump alters the PC
with a single byte offset.

Jumps can be unconditional or conditional. An uncondi-
tional jump executes every time it is processed. A condi-
tional jump allows the programmer to select internal pro-
cessor conditions that must be met before the jump is
executed.

Unconditional Jumps

The following examples show some of the variations of
the jump instruction. The first example is the basic jump:

JP 1234H JMP 1234H

However, when you are using an assembler, use labels in
the operand field of the jump instructions. Let the assem-
bler plug in the correct addresses. Using labels, instead of
the absolute numerical address, allows you to add or
delete lines in a program without having to recalculate all
of the addresses for every single jump instruction. For
example:

label opcode operand
JP HERE

Now you, and not the Z80, can have ultimate control over
a program's progress. (Sounds like a late night TV ad,
right?) No longer will you be subject to the constraints of a
program counter that chunks forward one address at a
time. This month's section discusses the three groups of
instructions that let you alter the Z80's program counter
(PC), and shows you hoto to use them to control the Z80's
execution of your programs. These PC altering instruc-
tions are the jump, call, and return instructions. All of
them replace the existing value of the program counter
with a new value. Changing the value in the PC alters the
flow of a program, directing the processor to a new
address.

Jump instructions send the processor on a one way path
to a new address. Call instructions save the old value of
the PC on the stack, thus remembering where they came
from. Return instructions recover the old value of the PC
from the stack, providing a way for the processor to return
to that old address. Normally, jumps redirect the flow of
the main program. Calls and returns are used to get in and
out of subroutines.

A direct jump instruction is three bytes long. The first byte
holds the opcode, bytes two and three contain the new ad-
dress. A relative jump instruction requires only two bytes.
The first is for the opcode, the second carries an eight bit
offset.

This offset, added to the current value of the PC, forms the
new PC address. The offset, always given in two's comple-
ment notation, can be positive or negative. A positive off-
set moves the PC forward through memory. A negative
offset move the PC back through memory. The maximum
values that can be represented by two's complement nota-
tion are plus and minus 128. Therefore, relative jumps
have a total range of 256 addresses. They can only move
the PC, forward or backward, through 128 bytes of
memory.

Call instructions are always direct. The instruction is three
bytes long, consisting of the call opcode and a new two
byte address for the PC.

Return instructions need just one byte for the opcode.
They get the new value for the PC from the stack.

The following sections discuss the various forms and for-
mats of the jump, call, and return instructions. In most
cases, there is a generic example of each instruction, fol-
lowed by a specific example. The Zilog mnemonics (the
Z80 opcodes and operands) are shown on the left, the
equivalent Intel mnemonics (the 8080 opcodes and oper-
ands) are shown on the right. Hex numbers are identified
by a trailing letter ZH'; e.g. 2533H.

JUMP INSTRUCTIONS
Both the Z80 and the 8080 know how to jump. A typical
8080 jump replaces the old PC value with a new sixteen bit

HERE ADD
etc.

A,03

When the program is assembled, the assembler assigns
an address to the label 'HERE', then inserts that address
into the operand field of the jump instruction.

Conditional Jumps

The state of any one of the Z80's flags can be tested during
a conditional jump. There are a number of logical condi-
tions that can be used to gate the jump (see Table 1). Log-
ical conditions are defined by the state of a flag. When a
flag is set to one, a condition is considered to be true. If the
flag is set to zero, the condition is false (not true). The Z80
will jump only when the condition selected is true. If the
condition is false, the program counter is incremented by
two (to skip over the embedded address in the jump in-
struction) and the program continues on its course.

A conditional jump can test for any one of the following
conditions:

cc Condition Relevant flag

NZ Non-Zero Zero flag is clear (Z = 0)
Z Zero Zero flag is set (Z = 1)
NC Non-Carry Carry flag is clear (C = 0)
C Carry Carry flag is set (C = 1)

Lifelines/TheSoftware Magazine, April 1983

In this case that data is the new PC address.
In addition to loading the PC from HL, the Z80 can also
load the PC with the contents of one of the index registers
(IY or IX). This particular instruction is a little tough for
the 8080. It has no index registers:

JP (IY) no equivalent
or

JP(IX)

The other special jump is relative, and it is unique to the
Z80. Known as the Decrement - Jump if Not Zero com-
mand (DJNZ), it is one of my favorites. The command
automatically decrements the contents of the register pair
BC. Then, if the value of BC is not zero, the processor exe-
cutes the relative jump. When the contents of BC reaches
zero, the processor stops jumping and the program con-
tinues along its merry way. Note that because this is a rela-
tive jump, it is only a two byte instruction. Just imagine
what this can do for your looping routines. Load the BC
register pair with the number of times that you wish to
loop through a particular segment of code. At the end of
the segment DJNZ is waiting to decrement BC, and, if it is
not yet zero, the processor reexecutes the loop.

MOV BC,10
LOOP ADC A,22

DJNZ LOOP no equivalent
The assembler will figure out the proper offset value that
is required to get the processor back to the address located
at the label 'LOOP'.

CALLING

PO Parity Odd Parity flag is clear (P/V = 0)
PE Parity Even Parity Flag is set (P/V = 1)
P Positive Sign flag is clear (S = 0)
M Minus Sign flag is set (S = 1)

Table 1
It is up to the user to ensure that the proper conditions
have been set up BEFORE testing the state of any flag.
Zilog mnemonics use one opcode for all jump instruc-
tions and include the qualifying condition in the operand.
All of the conditional jumps have the following format:

JP cc,nn Jcc nn
Here, cc is one of the eight conditions shown in the table
above, and nn is a sixteen bit value (the new PC address).
This type of construction is different from Intel's set of
jump instructions. Intel created a different mnemonic for
each conditional jump. For example:

JPNZ,1234H JNZ1234H
This instruction will jump to location 1234H, if the Zero
flag is not set (Z = 0).

Relative Jumps
Zilog has expanded on Intel's basic set of jump instruc-
tions to include relative jumps. Relative jumps are some-
times referred to as branch instructions. These instruc-
tions do not replace the old value of the PC. Instead, they
add a one byte value, known as an offset, to the PC. This
forces the processor to jump (branch) to another, nearby
location. Only one byte is used as an offset, therefore rela-
tive jump instructions are limited to a range that is within
128 bytes (plus or minus) of the current location. This is
not as limiting as it might at first appear. Many subrou-
tines and loops are short, well within the 128 byte bound-
ary. The judicious use of relative jumps reduces the length
of a program.
A relative jump can be unconditional or conditional.
However, the number of conditions that can be tested by a
relative jump are limited. These conditions are C, NC, Z,
and NZ (Carry, Non-Carry, Zero, and Non-Zero). When
writing programs, you should use a label to identify the
jump destination and let the assembler calculate the prop-
er offset. Here is an example of a relative jump that will
always branch to the location 'THERE'.

JR THERE no equivalent
The following relative, conditional jump will only branch
to 'THERE' when the Carry flag is set (C = 1).

JR C,THERE no equivalent

Specialty Jumps
There are two special forms of the jump instruction. The
first replaces the old value of the PC with the contents of
the HL register pair. Intel fans may recognize this as the
Peechl command (PCHL). The format of the Zilog instruc-
tion, consistent as ever, uses the JP opcode:

JP (HL) PCHL
Remember that the use of the parentheses around the
operand HL means that the processor is using the con-
tents of the addressed register pair as sixteen bits of data.

Lifelines/The Software Magazine, Volume III, Number 11

Jumps are fine and dandy if you know that your new des-
tination is where you want to be, permanently. However,
should you wish to mark your current location for future
returns, you must use the call instructions. Unlike jumps,
calls save the current value of the PC in memory (on the
stack). Normally, calls are used to enter a subroutine.
Then a return instruction, at the end of the subroutine,
can be used to restore the old value of the PC, sending the
processor back to the address that was saved by the call
instruction.

A call can be unconditional (executed every time that it
occurs), or it can be conditional. The set of conditions that
can be tested by calls is the set of conditions that can be
tested by conditional jumps.

Unconditional Calls

Calls are always direct. In other words, the instruction
always consists of the call operand (one byte) and the des-
tination address (two bytes). There is no relative address-
ing form of the call instruction. Again, if you are using an
assembler, use labels in the operand field. Let the assem-
bler do the work of calculating the absolute numerical
address. Here is an example of a direct call:
CALL SUB ALL SUB

...where 'SUB' is the address of the subroutine that the
main program is calling. z .. , . xr ° ° (continued on next page)

Conditional Calls

When a conditional call begins, the processor tests the
state of the appropriate flag to determine if the condition
is true. If the condition is true, the call is executed. If the
condition is not true, the processor skips the call opera-
tion and executes the next instruction.

In the Z80 assembly language, conditional call instruc-
tions look like conditional jump instructions. 'CALL' is
always in the opcode field. The operand field contains the
condition to be tested as well as the destination address.
The generic form for a conditional call instruction is:
CALL cc, nn Ccc nn

Where cc is one of the eight logical condition codes, and
nn is an absolute sixteen bit address. Note that Intel mne-
monics create a different mnemonic for each type of con-
ditional call.

Here is a call instruction that tests the state of the carry
flag. If the Carry flag is set (C = 1), the processor puts the
current value of the PC on the stack, then jumps to
'SUBC':
CALL C,SUBC CCSUBC

RETURNING
Return instructions undo the work of the call instructions.
Like jumps and calls, they replace the old value of the PC
with a new value, sending the processor to a new location.
However, unlike jumps and calls, returns do not include
the new address as part of the instruction.

Instead, the return instruction gets the new PC address
(two bytes) from the top of the stack. Therefore, it is crucial
that the appropriate address is residing on the top of the
stack when a return instruction is executed. Mismatched
calls and returns will most certainly send the Z80 into the
ozone. Returns can be unconditional or conditional. Mul-
tiple conditional returns are used within a subroutine to
provide a number of exits, each dependent upon a differ-
ent state of the processor.

Unconditional Returns

Normally, an unconditional return is the last instruction
in a subroutine. This return opcode is quite simple:
RET RET

(Intel and Zilog finally agree on something.)

Conditional Returns

Returns can also be conditional. Conditional returns
allow a subroutine to have several different exit points.
Frequently, a subroutine will perform a number of differ-
ent operations (example: reading multiple I/O ports). The
actual point of departure will depend on which condition
(set by one of the operations) is the first to be true.

Returns use the same set of conditions (see Table 1) that
are used by jumps and calls. Generic returns look like
this:

RET cc Rcc

...where cc is one of the eight logical condition codes.

Again, Intel has created eight different mnemonics, one
for each conditional return. A return that checks for odd
parity (i.e. the Z80 only returns when PV = 0) looks like
this:

RETPO RPO

Returning from interrupts

Zilog has a unique set of returns that are specifically
designed to return to the main program AFTER handling
an interrupt. There are two versions of this interrupt re-
turn. One returns from Non-Maskable Interrupts (NMIs),
the other returns from Maskable Interrupts (Mis).

Non-maskable interrupt returns
When returning from an NMI, use the following opcode:

RETN no equivalent

Here is how it works. When the Z80 recognizes an NMI
(the NMI pin is pulled low by an external device), it auto-
matically pushes the current value of the PC on the stack,
and saves the state of the interrupt flags (IFF1 and IFF2).
The Z80 then disables external maskable interrupts, and
jumps to address 0066H.
You, the programmer, will have placed an elegant inter-
rupt handling routine at address 0066H. If the last instruc-
tion in that interrupt routine is the RETN, (RETurn from
Non-maskable interrupt), the Z80 will get the old value of
the PC off of the stack and restore the pre-interrupt state of
the interrupt flags.

Maskable interrupt returns

The Z80 recognizes a maskable interrupt when the NMI
pin goes low while the interrupt flags are enabled (IFF1
and IFF2 = 1). When that occurs, the Z80 disables any
future interrupts (IFF1 and IFF2 are cleared) and then
saves the current value of the PC on the stack. Now, an
RETI instruction at the end of your interrupt handling
routine will recover the value of the PC before the inter-
rupt. That return looks like:
RETI no equivalent
When returning from a maskable interrupt, the Z80 does
not restore the state of the interrupt flags. (This allows the
programmer to decide if and when interrupts should be
enabled or disabled.)

Wait, let's try that again (Restarting the Z80)

There is yet another way to replace the contents of the PC.
The restart instruction will replace the current value of the
PC with one of eight preselected addresses. These ad-
dresses are hardwired into the processor, permanently
etched into the Z80's microcode.

A restart instruction consists of the restart opcode (one
byte). Within that opcode is a three bit code that selects
one of the eight restart addresses.

In the Z80 assembly language, RST is in the opcode field.
The operand field holds the actual destination address.
This format is different from Intel's format. Intel assigns a
restart number (0 through 7) to each address, then uses
that number (instead of the actual address) as the oper-

14 Lifelines/TheSoftware Magazine, April 1983

For example, a restart instruction that forces the processor
to jump to address 30H looks like:

RST30H RST5

and. The following table matches the Z80's restart ad-
dresses with Intel's restart numbers.

Zilog address (p) Intel restart number (n)

OOH 0
08H 1
10H 2
18H 3
20H 4
28H 5
30H 6
38H 7

That about wraps up this section on altering the state of
your PC. Next month, I am discussing the leftovers - those
miscellaneous groups of instructions that aren't big
enough to fill an entire section. This includes the I/O in-
structions (Input and Output), the bit testing instructions
(these are unique to the Z80), and the CPU control
instructions.

Any feedback that you may have is always welcome. Send
any questions or comments to me, care of Lifelines. HTo construct a restart instruction, use the following form:

RST p RST n

Feature
-------- RECLAIM.Com Reviewed by Robert R VanNatta

A four-week veteran of CPM will
learn another thing. If the disk error
is in the directory area, lessons one
through three won't work.

A five-week veteran will be smart
enough to know that a disk that does
any of the things he learned about in
the first four weeks should promptly
be donated to charity for use as a
frisbee.

What does all this have to do with
RECLAIM? WeU, RECLAIM is about
as smart as a two and one half week
veteran. RECLAIM reads your disk
sector by sector and track by track
from beginning to end. Unreadable
sectors are identified and are ultimat-
ely locked out of use by an almost in-
visible directory entry. Specifically,
the unreadable sectors are collected
into a file that is placed in USER area
15 and given R/O SYSTEM attributes.

If you really have the urge to look at
the directory entries you can do so by
moving STAT.COM to USER 15.
Otherwise the directory entries are
"invisible".

How Well Does It Work
RECLAIM supports three types of
tests. The quickest is a read only test.
The others are a non-destructive
read-write test and a destructive
read-write test.

As far as identifying bad blocks goes
RECLAIM works just as well as the
"Verify" option that is provided as
standard equipment by Lifeboat as a
part of the COPY program that
comes with CPM versions for the
TRS80 Model II (and perhaps other

CPM versions as well.)
The design flaw in RECLAIM is that,
since it is track oriented, it does not
reveal whether or not an identified
bad sector is currently within an
active file. In fact, it doesn't even
bother to tell you where physically
on the disk the problem is (the Life-
boat COPY program does). The up-
shot of this is that, if the problem is
outside a file, the sector will be suc-
cessfully locked out and won't likely
bother you until you attempt to run a
diskcopy program. However, if the
problem is within an assigned file
area, you will have the peculiar situa-
tion of having two directory entries
pointing to a single sector (the one
generated by RECLAIM and your
original one). For this reason, until
the file is identified (by trial and
crash) and deleted, you can still ac-
cess the bad sector by attempting to
use the file containing the error.

Conclusions
RECLAIM is user friendly and menu
driven. I have not identified any bugs
in it. It works exactly like the six page
manual says. The first page of the
manual is devoted to telling you that
Lifeboat makes no warranty with re-
spect to the program, and does not
claim that the product is fit "for a par-
ticular purpose." If you don't happen
to have a bit copy program such as
the COPY utility that Lifeboat gives
you for free when you purchase CPM
for the Model II, this program might
have some use.

For my part, however, I have found it
almost as convenient as simply re-
naming the bad files to BAD.FIL. Q

There are a number of utilities on the
market designed to identify and han-
dle disks with defective sectors. RE-
CLAIM happens to be one that is
marketed by Lifeboat Associates

The concept behind such a utility is
essentially quite simple. RECLAIM
and other similar utilities do not
actually "fix" your disk. What they
do is endeavor to identify portions of
the disk that are unreliable (bad sec-
tors) and then "fool' the operating
system into avoiding access to these
sectors. Since the CPM directory is
by definition a road map directing
traffic to various sectors, this is often
done by means of a directory entry.

Anyone who has used CP/M more
than a week has figured out that, if a
particular file dies with a "bad sec-
tor', it is usually possible to continue
to use other files on the disk.
Furthermore, by the time that you
have used CPM for two weeks you
have figured out that if you erase the
bad file, you shoot yourself in the
foot. The reason is, of course, that as
long as you leave that bad file on the
disk, the disk sector will remain as-
signed to that file and thus will not be
accessed (as long as you can remem-
ber which file is bad and avoid it). If
you erase the bad file (which is done
by delete flagging the directory),
sooner or later the operating system
is going to decide the use the bad
spot over again and bingo!

A three-week veteran of CPM will
figure out that he can protect himself
from such disaster by renaming his
bad files by some descriptive code
such as BAD.FIL, and then by leav-
ing them on the disk forever.

Lifelines/The Software Magazine, Volume III, Number 11 15

YOU SPENT $4,000 ON
A PERSONAL COMPUTER.

No matter what you need
it to do.

More importantly,
LIST contains the LIST
Software Locator™ a com-
prehensive guide to over
3,000 personal computer
programs—conveniently
indexed by application,
industry, operating system
and hardware. You’ll find
detailed descriptions of
applications software that
pertains specifically to the
type of business you’re in.
And the type of needs
you have.

LIST is sold at leading
computer stores and book-
stores. Or, you can phone
our toll-free number (1-800-
821-7700, Ext. 1110) or
send in the coupon below,
and receive a copy by mail.
The price, exclusive of
postage and handling, is
$12.50.

Which, when you think
about it, is a pretty small
price to pay for something
that can maximize a much
larger investment.

LIST is published by
Redgate Publishing Company,
an affiliate ofE.F. Hutton.

FOR ANOTHER $12.50,
YOU CAN GET

YOUR MONEY’S WORTH.
And the software pro-

grams available to business
and professional people
number in the thousands.

But where do you go
to find them?

Today’s personal com-
puters have an extraordi-
nary range of capabilities.

For a
variety of
reasons, v* K \
however,
many busi-
ness people

* I 1

IBB

are unaware of just how
much their computers are
capable of.

As a result, they aren’t
realizing the full potential of
their investment.
THE KEY TO GREATER

PRODUCTIVITY IN A
WORD: SOFTWARE.

Computers do the
work. Software does the
thinking.

Expanding the amount
of work a personal com-
puter can do is merely a
matter, then, of gaining
access to a broader array
of software.
© 1983 Redgate Publishing Company.

All rights reserved.

THE KEY TO SOFTWARE
IN A WORD: LIST
LIST is the first pub-

lication that
puts software
first.

It contains
articles by some I
of the most
respected
names in the
computer field.
Written to help
you get the
most out of your
personal com- j
puter. No matter I
what brand it is. L

f I’D LIKE TO GET THE MOST OUT OF ">
MY PERSONAL COMPUTER.

| Please send me ________ copies of LIST at $12. 50 a copy plus $2. 00
each for postage and handling. (Tax will be added where applicable.)

--------------" 1 VISA MasterCard (Interbank No)

Card No Exp. Date

Signature ---

Print Name __

Address --

Cit y---------------------------------- State ----------- Zip ----------- I
Send to LIST, Redgate Publishing Co. , 3407 Ocean
Drive, Vero Beach, FL 32960. ■
Or phone, toll-free: 1 800 821-7700 Ext. 1110

s LIST I
_ The Software Resource Book J

For Personal Computer Users

Lifelines/TheSoftware Magazine, April 198316

Feature
A Review of Microshell —
A Unix Like Utility

Bruce N. Hunter
Originally written in BDS C, it was rewritten in assembly
to keep it down to a mere 8 K bytes.
The CP/M Shell, MicroShell, functions much like the
Unix Shell. To fully illustrate some of these features, I'll
cover them one at a time.
The big feature, I/O redirection, is accomplished by the
traditional Unix characters ">", "<", "»". The command

myprog > progdat
will run the program myprog and place its output in
progdat. Had the command myprog been given alone,
the results would have gone to the screen, since programs
written for Unix have only three standard I/O files, stdout
(the standard output to the console), stdin (the standard
input from the console), and stderr (the standard error
routines). The redirection character, ">", has redirected
the program output from stdout to the file progdat. On
the other hand,

myprog > progdat
inputs or receives its data from the file progdat. Now, to
output the data to a file, all you do is

myprog < progdat > outfil
This will read the data from the file progdat to the pro-
gram myprog and redirect its output to the file outfil.
There are variations on a theme to be sure. "»" will ap-
pend the redirected output to an existent file and ">*" will
redirect a file intended for the printer to a file. A command
like

aprog< + a.dat

will run aprog and send its output to the file a.dat while
echoing the results to the console. As most C program-
mers know, C has no provision for a line printer. When C
and Unix were created, the I/O was designed to be han-
dled by Unix. If you are running under CP/M, it can be up-
setting to find this out, especially for those uninitiated in
the writing of drivers! Never mind, because with Micro-
shell you can do this:

cprog >$p
This sends the results of the program off to the line printer
without hesitation. And the wonders haven't even
started. The most remarkable feature of the shell is pipes.
A pipe is a feature whereby the shell creates a temporary
file and sets all the necessary flags to keep a program's out-
put intact, then it feeds the output to the next program as
its input, resets the flags and erases the temporary file.
The way it appears to the user, the output is "piped" to the
input of the next program. The classic example is the crea-
tion of a dictionary by piping the following UNIX-like util-
ities to a filter

wrdflter < file.txt | sort | uniq | col >+$p
The command line will have the program wrdflter strip off

(continued on next page)

One of the most pleasant surprises I have had in a long
time was reviewing New Generation Systems' CP/M pro-
gram MicroShell. I am presently completing a book in the
C programming language, and I was wondering how to
demonstrate to micro users how C and Unix blend and
work together. Then I heard of MicroShell. I had been
writing a number of C programs in Leor Zolmaris version
of BDS C (version 1.5) for redirected I/O, and when Micro-
Shell arrived, I jumped on it like a 5 year old at Christmas.
There were no disappointments.

The Unix operating system provides command line capa-
bilities that gives almost unlimited input/output redirec-
tion coupled with built-in utilities to perform tedious, fre-
quently done programming tasks. In fact, its input/output
redirection are legendary by now. Unix uses a shell that is
both a command language and a programming language.
It is this shell that is the interface to the Unix operating
system. What it does is effectively remove the need to pro-
gram file and device I/O into the applications programs
since the Unix operating system will do it for the program
by way of the shell. Unix provides a wealth of built-in utili-
ties such as sorting routines, formatting routines, en-
crypting, text comparison, searching, printing, counting,
etc. The shell commands allow these utilities to interact
with the program and/or programs by linking them toge-
ther by way of channels called pipes. The net effect is a
system that allows a great deal of work to be accomplished
with a minimum of programmer effort.

The shell is now available to CP/M users in the form of
MicroShell. What is great about MicroShell is that now all
those who enjoy doing creative programming in C can
now do so in a more "C'-like environment, which of
course is a Unix-like environment. Unix, as we all know, is
the property of Bell Laboratories, and was written for DEC
PDP series computers operating in a 16/32 bit environ-
ment. So, except for the fortunate comparative few lucky
enough to have access to a machine using Unix 7, C users
did without Unix. However, everyone who has read Kern-
ighan and Ritchie knows that Unix and C go together like
Laurel and Hardy. Their development and evolution were
interwoven, an operating system and a language that
were of, for, and by programmers. And now many of the
innovative ideas of Unix can finally live and function in
the more familiar, far more user-friendly, and more com-
patible 8 bit environment of CP/M.

Rick Rump, creator of MicroShell and president of New
Generation Systems, was introduced to Unix in 1980 on a
PDP-11. Like all of us small system programmers, he was
less than enthusiastic about having to learn to live with a
very large operating system. Finding that Unix was not
only very powerful, but to the surprise of all, easy to learn,
and gaining more experience on a DEC \AX, Rick became
convinced that what CP/M needed was a "shell". By 1981
he made his dream a reality. Rick created a Unix-like shell
to replace CP/M's CCP, the console command processor.

Lifelines/The Software Magazine, Volume III, Number 11

the unneeded white space and remove non-alpha charac-
ters from the file file.txt. Then the results will be piped to
sort, a system utility to sort ASCII records. The output of
sort will then be passed (by pipe) to uniq(ue) to remove
any repetitions. In turn, that output will be piped to col,
another system utility to put the output in columns. The
end result is redirected to the lineprinter and echoed to
the screen (+ $p). Now, all you programmers pause to
think of the accomplishment of this half a line of code.
This is just a simple filter consisting of less than a half a
page of code coupled to the system utilities by the shell.
What it creates is a neat little dictionary of all the words in
file.txt, and it is created in minutes. Imagine writing a free
standing program in a high level language to do that.

Writing A Filter
Writing the filter itself is a small matter. Here in typical C is
a filter to strip all the extraneous characters from any text
file (including program source code).
/*

WFTR.C

filters words from text files

(c) Bruce H Hunter 83
*/
#include "bdscio.h"

int c;
main ()

int inspace, inword;

inspace = FALSE;
inword = FALSE;
while ((c = getchar ()) ! = EOF) /*C uses '!' for NOT*/

i f (c== ' ' II c = = '\n' II c = = '\t')

inword = FALSE;
if (linspace)

c = z\n';
putchar(c);
inspace = TRUE;

}
else
continue;

}
else
{

inword = TRUE;
inspace = FALSE;
if (isalpha (c))

putchar(c);

}
}

}
This is the way it breaks down:

while ((c = getchar ()) ! = EOF)

if (c = = " || c = = '\n' || c = = '\t')

The file standard input is scanned for input. The keyword
is standard input. Since you have to rely on I/O redirec-
tion, you must rely on the primitives getchar and putchar
for all the I/O. Input is taken a character at a time and
checked for the end-of-file mark. When the EOF is seen,
the loop will exit. The if statement now looks for the occur-
ence of white space characters.

inword = FALSE;
if (!inspace)
{

C = '\n';
putchar(c);
inspace = TRUE;

If white space is encountered, the inword flag is set to
false, and if the flag inspace is not true, signifying the first
entry into the white space, a newline (line feed) is output
to demarcate the "record". The flag inspace is now set to
true.

else
continue;

If the character pointer is already in white space, you do
not want to copy the character, so a null is accomplished
by sending execution back to the loop to get the next char-
acter without copying this one to the output stream.

else
{

inword = TRUE;
inspace = FALSE;
if (isalpha (c))

putchar(c);

The default action is that you are now back in a word, so
inword is set to true, inspace is set to false, and if the char-
acter is an alpha character, it is put to the output stream.
Again, notice how small the program is and how much it
does when used in conjunction with the shell and the sys-
tem library.

Command Line Flags
In addition to the redirection characters and the pipes,
there is a multitude of flags and special characters for the
command line. I will touch on them just briefly:

t marks a character to be imbedded in the command
line to be used as a control character

: marks a comment in a shell file

; separates commands on a single line

+ echos redirected I/O to the screen

+ turns on a flag

- returns char ready (status)

" quote pairs trap their contents as a single command
or argument

Lifelines/TheSoftware Magazine, April 198318

Shell files will group programs and system utilites into
very complex systems. The only limitations of their capa-
bilities are those of the programmer's imagination and
ability to use them.

Command Line Editing
MicroShell also has interactive command line editing.
Suppose a typo sneaks in during the typing of a com-
mand line for the shell. Just type a "!" and the shell goes
into an edit mode. It will retype the command line, inform
you that it is indeed in edit mode (with the insert mode
either on or off), and you are ready to edit. The editing
commands are those of WordMaster or WordStar. You can
skip over words, insert, delete, go to the end of the line,
the beginning, all that neat WordStar "stuff'. Once the
command line has been executed, the edit mode automa-
tically goes off. It is an extremely useful, friendly and
familiar facility.
All the CP/M features have been retained. PIP, DIR, STAT
and the others so familiar to CP/M users, are all there. The
shell does not change CP/M, it enhances it. The same
familiar control characters like tx and tu are still there. The
difference is that CP/M commands can be grouped on the
command line or in a shell file to save all the unpleasant-
ness of retyping (and don't forget the editing).
pip a:microshel.rev = b:microshl.rev,wftr.c;type microshel.rev > + $p;ws

The line above will create a copy of this article on my B
drive, append the source code of the filter program, type
it to the printer echoing it to the console, and invoke
WordStar when it is done, all this while I'm in the kitchen
getting yet another cup of tea.

UNIX-like Tools
There are a number of utilities or tools in Unix that, when
coupled with its ability to redirect and pipe, give it envi-
able power. Most of them are character oriented, since one
of the keys to the system's operation is the streaming of
"character", as opposed to "binary", data. You have al-
ready seen some of them in the above examples such as
sort and uniq. MicroShell provides a large library of tools
which they call "Microtools". The following is a brief de-
scription of their tools.

col

Prints files in multicolumned format
Col will print the input file into a multicolumnar format.
The default is a four column output with a page length of
20 lines and the data scanned vertically.
Switches are available for

(-a) horizontal scanning
(-cn) number of columns options
(-en) tab expansion options
(-In) page length
(-pn) blank padding between pages
(-rn) record mode
(-s) column delimiters
(-x) page cut marks

(continued on next page)

\ causes the shell to ignore any special meaning of the
next character

$ argument substitution, CPM's familiar $1 etc.
! invokes a Wordstar-like editor for the command line

$T Console redirect
$P Printer redirect
+ f auxiliary file search enable (-f disable)
+ g gobble line feeds during redirected I/O (-g disable)
-1 login disk (+1 same thing)
-p prompt string (you have to read this one)
-s display shell status
+ u uppercase translation of command line
+ v enable verbose mode (echo)
-v disable verbose mode
-x exit the shell

+ m CP/M eof
-m UNIX eof

-t transparency character (ignores or recognizes spe-
cial characters)

The use of the characters is simple. They are used in the
command line as required in the order that they are re-
quired.
-v; -m; wftr < wftr.c | sort | uniq | col > + $p ; + v ; +m
This directs the shell to:

1- "Turn off the verbose mode and don' t echo the char-
acters" (which would produce double everything)

2- Go to the Unix end-of-file character and use a tZ fol-
lowed by a linefeed

3- Have word filter invoked and read its source code in.
4- Filter it and pass it to sort
5- Pipe its results to unique and its output to column.
6- Output the results to the printer echoing the results

to the console
7- Turn on the character echo and CP/M end-of-file

flags.
That's a bunch for a one liner!

Shell Files
Should you have any (well founded) objection to typing a
command line like the line above more than once, more
good news, the shell file. A shell file is very much like a
Submit file with some noteworthy differences. The first
difference is that shell files work, which is more than can
be said for Submit because it is not always reliable. Also,
all shell commands can be used. There is no special invo-
cation for a shell file. Just call it by name and the shell will
search for it and invoke it. Shell file programming is an art
form. It is a language in itself. There are gotos, ifs, returns,
wheres, etc., command line argument substitution, vari-
able assignment, input statements (from the console),
break characters, output print statements, and that
doesn't even scratch shell programming possibilities.

Lifelines/The Software Magazine, Volume III, Number 11

Switches are available for
(-a) search across boundaries in the raw mode
(-b) search across boundaries in the text mode
(-i) search white space delimited words
(-n) number input lines
(-p) use the next argument as a search pattern
(-w) verify wildcard expansions
(-x) print everything not containing the pattern.

P
implement a pipe (at CP/M level)

P is used to invoke a Submit file to execute a pipeline.

Switches are
(-o) save the output
(-s) save the pipelne simulation
(-x) do not execute the generated .sub file

paste

horizontal file concatenation

Paste will concatenate two or more files horizontally, e.g.
record to record.

Switches are
(-cn) passes each file into a separate column
(-d) delimit with argument
(-p) paste prefix

pr
print files

Pr prints the specified file. The default has a header, pagi-
nation, and page numbering. Pr makes up for C's lack if a
printer driver in spades.

Switches are
(-be) break enable
(-cn) multiple copies
(-d) double space
(-en) tab expansion
(-f) form feed
(-g) "display on glass"
(-h) header modification
(-i) secondary header
(-kn) page number reinitialization
(-In) page length
(-m) reformat header
(-n) five digit line numbers
(-on) left margin
(-p) page pause
(-s) header suppression
(-t) suppress pagination
(-u) map output to upper case
(-x) send printer control codes

rec

reformat record lines

Rec reformats single line multi-fielded records to multi-
line records.

The switches are
(-de) delimiter specifier
(-n) swap names in the first record
(-s) line feed suppression of extra cr/lf's between

Lifelines/TheSoftware Magazine, April 1983

cut
cut (and save) a character or field

Cut will print the specified columns or fields, not
printingthose not specified.

Switches are available for

(-cs) cutting the characters specified
(-de) changing the delimiter default
(-fs) field cut
(-r) retain original
(-x) cutting columns or fields not specified.

crypt

encrypt or decrypt files

Crypt will do encryption or decryption of the specified
input file to a user specified key

deform

deformats a file

Deform removes text formatter control lines (like
WordStar's dot commands) from the input file. It can
optionally remove inline commands such as imbedded
control characters.

If you have ever had to reformat a WordStar file, say for
example to feed it to TEX for reformation, the usefulness
of this one is self-evident.

Switches are available for

(-ec) change the character recognized for in-line
commands from the"\"

(-fc) from the"."
(-i) enable inline command stripping
(-n) retain numerics
(-r) retain control lines, discard text
(-s) enable control character stripping
(-w) filter only words separated by returns into a file
(-x) filter but keep uppercase distinctions

The last two switches perform nearly the same function as
the word filter program coded in the middle of this article.

diff
compares text files

Diff will do a line by line comparison of two text files and
report all differences found. High order bits are stripped
for WordStar compatibility.

echo

echo arguments

Echo will print its arguments to the screen.

The usefulness of this is as a vehicle for printing messages
to the screen during shell file execution. It is a nicety for
the creation of "warm furry buttons" so seldom seen in
Unix execution.

find
find a pattern in a file

Find searches for specific patterns in a file and prints the
lines containing them.

20

Microshell vs.
Other UNIX-like Utilities
MicroShell has successfully given us the best of two
worlds, Unix and CP/M. No compatibilities need be lost
with the host operating system CP/M, but most of the ad-
vantages of the UNIX shell are now also available and at a
minimum of overhead.

MicroShell is not the only utility for CP/M to provide
Unix-like features. Unica by Knowlogy also has many
Unix-like features, but is available in a Z-80 implementa-
tion only. With today's proliferation of 8085/8088
coprocessors, this is an unfortunate oversight. I also
understand that MARC, the operating system originally
authored by Edwin Ziemba (whose untimely death must
have nearly destroyed the project), is near completion by
Vortex Technology. MARC is a complete operating system
with very Unix-like features. I will be investigating both
MARC and UNICA shortly.

At CP/M-83 I was introduced to Carousel MicroTools by
Deborah K. Scherrer and the gang at Carousel MicroTools,
Inc. Carousel MicroTools (Unicom Systems) is one of the
oldest of the Unix like utilities. Going all the way back to
The original Kernighan and Plauger's "Software Tools" (in
Ratfor), MicroTools is an enormous package that creates a
"virtual operating system," an operating system within a
system to allow programs written in and for the system to
be ported to any other environment that supports its
shell. Like Unix and all the Unix-like systems, the com-
mand line interpreter provides the vehicle to bring the
system together into one powerful cohesive entity. The li-
brary of functions available are the largest I have en-
countered yet for a set of micro tools, and they can easily
be the entire subject of another article.

As almost a post script to this article, at CP/M-83 Digital
Research announced their very own, internally devel-
oped C. Written in C, it is the full Unix 7 C implementa-
tion. The package will not be available until spring and
will be offered, at least initially, in the 8086 (8088) version.
It fully supports I/O redirection and will have an
independent preprocessor for it. Again, we move closer to
C and its environment. Back to Microshell.

The documentation for Microshell is well written and or-
ganized. It has a nice format, and once I picked it up, I
found it impossible to put down until it was completed (a
statement rarely made about manuals). The only bug I
found was an occasional clipping of the last letter of words
run through a series of pipes. Don Graff of MicroTools (as-
sociated with New Generation Systems, not to be con-
fused with Carousel MicroTools, Inc., a different com-
pany) is writing a merge routine to sort/merge previously
sorted files. This will be a welcome addition. The only
other idiosyncracy I noticed is that during file read/writes
there is a great deal of head activity indicating unusually
small file buffers, no doubt to allow operation in small
memory areas. I have been told that this is going to be im-
proved upon in a future release.

Microshell and MicroTools are available from New Gen-
eration Systems, 2153 Golfcourse Drive, Reston, Virginia
22091. Phone: (703) 476-9143

It is not often that one finds a piece of software that fulfills
a need as well as Microshell has, and it does it so well. It is
a welcome addition to the field of microcomputing. g)

records.

sort
sort the file

Sort will sort the input file before passing it to the output
file. Default sort is lexicographic by line.

The usefulness of this program speaks for itself. The rou-
tine uses a shell sort which is confined to memory and will
allow a sort of 5000 lines (memory permitting).

Switches are
(-b) ignore leading white space
(-de) respecify delimiter
(-fn) Sort on field n
(-m) sort upper case and lower case together
(-n) key on numeric strings
(-r) reverse sort

spl
split the file into manageable pieces

Spl splits the file into sections of (default) 100 lines and re-
names the fragmented files xl, x2. . . .,xn

Switches are
(-cn) split by characters
(-In) slit by n lines
(-n) rename output files

str

display printable strings

Str will search a (usually) non-text file for printable strings

Switches are
(-a) display the strings' address
(-o) address from the origin of the file and
(-r) enable raw mode

tee
save the pipeline file

uniq
filter (remove) duplicate lines

Uniq compares adjacent lines and effectively removes
duplicates.

Switches are
(-d) output duplicate lines only
(-n) mark the count of occurences
(-u) output unduplicated lines only

wc

count lines, words, and characters

WC will give a statistical count of the number of lines,
words, and characters within the specified file

Switches are
(-c) shar count only
(-f) include dot commands
(-gc) command line dot replacement
(-1) line count only
(-w) word count only

Lifelines/The Software Magazine, Volume III, Number 11

Feature A Review of Wordix,
A Text Formatter

Ron Watson
the enhancements can be done with
one pass of the print mechanism;
and "two pass print", when it is nec-
essary to make two passes with the
print mechanism because the printer
does not have a command to imple-
ment a needed feature. However, the
mode is not determined by whether
or not the printer has the enhance-
ment command, but by whether or
not it can backspace. There is a cer-
tain logic to this, but while my printer
has enhancement commands, even
more commands than they antici-
pated, it will not backspace unless it
is in "incremental mode", at which
time the enhancement commands
won't work. When I told Wordix the
truth, i.e., no backspace, it imple-
mented all the enhancements using
two passes of the print head over the
same line. This worked o.k., except
in what Okidata calls "near letter
quality" mode, wherein the printer
automatically makes two passes over
the line, slightly offsetting the print
for each pass.

This turned the output into garbage.
So, I lied - I told the program the
printer would backspace. This
brought good results except when I
tried to use the Wordix overstrike fea-
ture and it tried to backspace. I had to
give up "near letter quality" or over-
strike. There was also no provision
for the Okidata's subscript/super-
script commands: Wordix imple-
ments these by positioning the car-
riage in half line increments.

The description of printer customiza-
tion in the manual is the weakest sec-
tion, and it's still not bad. The whole
process is made fairly painless by the
thoughtful inclusion of a printer test
file on the program diskette. I tried
the program on several printers, and
was able to get good results from all
of them. Despite the problems I had
with my printer, Emerging Technol-
ogy, Inc. has anticipated the features
(or lack thereof) of most letter quality
and dot-matrix printers.
The tutorial is written in a casual
style that leads a new user gently
through the basics. After going over
it, I was able to prepare a simple re-

Why would anyone use two pro-
grams when one would do? If one
program can be used to edit text and
prepare the final document, why
would anyone ever consider using
two separate programs, one to pre-
pare a file of data and another to for-
mat that file into a completed docu-
ment?

With a wide selection of one-step
word processing programs available
for the IBM PC, why should anyone
consider a two-step process like
Wordix? The whole idea of using a
text editor to input the data, along
with all those formatting commands,
and then running another program
just to translate that into a final docu-
ment seemed archaic to me. That's
the way it would have been done in
the old days when batch processing
was the cat's meow.
After all, WordStar will respond to
over 130 commands. That's very nice,
lots of capability. Anyone who uses it
very often will soon learn the com-
mands. But what of those who only
need to prepare a few documents a
week? They are not going to spend
enough time working with the pro-
gram to become facile in the use of so
many commands. (I'm not picking
on WordStar, any full function word
processor contains a rich command
language), and if they also want to
prepare other text files, like pro-
grams, they will probably want a dif-
ferent editor for that. Sounds like, for
the present anyway, we might be
stuck with two programs: one for
word processing documents that are
destined to be printed, and another
to edit program files.
Now, if you chose Wordix, or a simi-
lar product, you could use just one
program, any text editor, to enter the
text, thereby eliminating the need to
learn two methods of data entry.
Whether you put the format com-
mands into the program interactive-
ly, as with WordStar, or into the text
file, as with Wordix, there is no way
to avoid the need to remember them,
and the problem of familiarity re-
mains the same. Or does it?

Text formatters usually have a macro
facility that allows you to redefine

commands or groups of commands
so that they may be invoked with ter-
minology meaningful to you. In the
case of Wordix, and others, once
these macros are defined and tested
they can be stored in a disk file and
used over and over. Maybe there is
some relief for the occasional user. If
the macros were defined to suit a par-
ticular application, with names that
were meaningful to the user, per-
haps the effort to remember the com-
mands could be reduced.
Any good full-screen text editor with
a print function could be used for in-
formal notes, short letters and
memos. Combine the text editor with
this product and a set of macros de-
fined to handle the specific needs of
the user for more formal presenta-
tion and you've got both power and
ease of use.

The occasional user is not the only
one who might benefit from such a
product. A program that can concen-
trate on the preparation of docu-
ments, one that needn't be con-
cerned with text entry, can provide
some extra features found in few all-
in-one word processors available to-
day: features like automatic table-of-
contents and footnote positioning,
for instance. Large documents
should be easier to handle, too.
The program comes in a standard
size binder and includes one pro-
gram diskette and about 200 pages of
documentation. The manual is di-
vided into a tutorial section and a ref-
erence section, and although it is
well written, it could use an index
and more examples.

Several printer personality files are
provided, covering most popular let-
ter quality printers, but the only dot-
matrix printer included is the Epson.
The first thing I had to do was learn
how to build a personality file for my
printer, an Okidata Microline 84. The
list of options seems quite complete,
but there is an anomaly in the way
the combinations of options interact.
The list allows for a printer that has
underline and autobold commands,
but does not always use them. Ap-
parently, the program works in two
modes: "single pass print", when all

Lifelines/TheSoftware Magazine, April 198322

The format commands are, with a
few exceptions, very straightfor-
ward. A two-character mnemonic
preceded by a period to identify it
and placed in the first position of a
line does the job. The command
names are well chosen and easy to re-
member. The descriptions in the doc-
umentation are concise and com-
plete. Likewise, the I/O commands
are implemented in a straightfor-
ward manner with commands like
"read" and "write".
The macro facility is more compli-
cated. If you have ever worked with
an assembly language macro assem-
bler, you will be quite at home here.
While not as powerful as most as-
semblers, it allows parametric substi-
tution, a simple "IF" statement,
loops and some function calls. A
macro may call other macros includ-
ing itself, and calls may be nested
fifty levels deep. Macro names and
variable names can be up to nine
characters long and the names are
case-sensitive so that "PAGE" is dis-
tinct from "page". Emerging Tech
adopted a convention ot using upper
case values for macros to aid in dis-
tinguishing them from commands.
There are more than twenty pre-de-
fined variables that are maintained
automatically by the program. These
contain things like the current date,
page number and line number on the
page.

Several useful macros are provided
with the program and some of these
serve as examples in the documenta-
tion to describe how the macro facil-
ity might be used. The descriptions
are easy to follow, showing how the
development process might pro-
ceed, but there are not as many ex-
amples as I would like.

One set of macros provided with the
program and described in the docu-
mentation can be used to define a list
of items to be numbered or labeled as
it is printed. I started to experiment
with macros by enhancing these to
vary the location of the item label de-
pending on the length of the label. If
the label would fit, it would show on
the same line as the first line of the
item description, otherwise the label
would be on a line by itself. This pre-
sented no real difficulty, so I tried a
page heading macro that would al-
low a line in the page heading to vary
so it could be used as a section de-

scription. The macro to do this was
easy enough, but I did turn up an er-
ror that crashes the program if a
heading command is mis-coded.
The program was generally very
helpful when an error was made,
telling the nature of the error and the
line where it occurred. The one ex-
ception I found is mentioned above.
My only complaint about the macro
development process is the time
needed to switch from text editor to
Wordix to text editor in order to input
the macro, test the results, and then
correct the macro. Wordix is a huge
program (over 90k of disk space) and
it tikes a while to load. I put Wordix
and a text editor in a virtual disk and
that, of course, speeded things up.
Macros may be used to divert pro-
cessed output text into a named buf-
fer. Output thus diverted can be re-
called into the output file at any time
by using the buffer name as a macro.
This very powerful feature can be
used, for instance, to keep a part of
the output from being split across
two pages, or to assure that an empty
area is left in a specific place.
The only serious lack of capability I
found is the control the user has of
the program's composition rules. For
instance, there is no way to request
proportional spacing on right justi-
fied output, and the space between
words is always reduced to one
blank, even following punctuation
such as periods and semicolons. This
actually sounds worse than it looks,
but I would have liked to see an op-
tion to control the spacing between
sentences. A incremental spacing is a
fairly common option on high-ticket,
letter quality printers, they really
should have provided the capability
to use it. These shortcomings pre-
clude using the program to prepare
camera-ready output for proportion-
ally spaced, right justified text.
In summary, I believe the program
has a very good balance between ca-
pability and ease-of-use. It is cer-
tainly powerful enough for most text
processing needs, and once macros
have been prepared for a specific ap-
plication, it can be very easy to use. I
would also recommend the program
for consideration because of the
overall high quality of the documen-
tation and program reliability.

port with page headings, footings,
and print enhancements, and had
even learned how to set up simple
macros. I had a report to prepare, so I
used my newfound knowledge to
turn what would have been a hand-
written document into a very profes-
sional looking piece of work with
numbered pages, right justified text
and cleverly placed underlines. The
recipient was so impressed he paid
very little attention to the content,
which wasn't that important anyway.
Emboldened by success, I plunged
into the reference section of the man-
ual, seeking the really exotic stuff
they had promised at the end of the
tutorial: things like automatically
numbered lists and sections, foot-
notes, tables-of-contents and other
advanced formatting features.
The reference section starts with a
description of how to invoke the pro-
gram from DOS. There are many op-
tions that can be put on the DOS
command line, and most are quite
useful. One can vary the overall page
offset and the printer personality file
to be used, and can specify values for
user-defined variables to control the
output or to appear in the text. The
command line can get quite long and
a regular user would want to set up
.BAT files to ease the pain.
The reference section then goes on to
describe the various types of com-
mands available, alternative ways to
get data into the program, the com-
position rules used to create an out-
put line, how page layout is done, hy-
phenation rules and footnotes. This
part of the manual goes a little fast
and is not as well organized as the tu-
torial, but it does cram a lot of infor-
mation into 25 small pages.
It is not necessary to spend much
time in the reference section to dis-
cover that what you have here is an-
other programming language, com-
plete with assignment statements,
"IF"s and "GOTO"s. There are also
more than thirty format commands,
another thirteen or so to implement
the macro features, and five or six to
control input and output files. There
are an additional eight commands
that are included with the package as
pre-defined macros whose functions
are described in the reference. Now
that may seem somewhat over-
whelming to you; it certainly did to
me, until I began to dig in to it.

Lifelines/The Software Magazine, Volume III, Number 11 23

All you dBASE II hotshots
are about to get what you
deserve.

1 ■

ii
iii

nM
ki

ii

Illllllllllllllllllllll

You’ve written all those slick
dBASE II programs.

Business and personal
programs. Scientific and
educational applications.
Packages for just about
every conceivable informa-
tion handling need.

And everybody who
sees them loves them because
they’re so powerful, friendly and easy to use.

But that’s just not good enough.
Uh-uh.
Because now you can get the gold and the

glory that you really deserve.

Here's how.
We've just released our dBASE II

RunTime™ application development module.
And it can turn you into an instant

software publisher.
The RunTime module condenses and

encodes your source files, protecting your
special insights and techniques, so you can
sell your code without giving the show away.

RunTime also protects your margins
and improves your price position in the
marketplace. If your client has dBASE II, all
he needs is your encoded application. If not,
all you need to install your application is the
much less expensive RunTime module.

We’ll also provide additional “how to”
information to get you off and running as a
software publisher sooner.

And we'll make your products part of
our Marketing Referral Service. Besides put-
ting you on our referral hotline, we’ll publish
your program descriptions and contact
information in dBASE II Applied, a directory
now in computer stores world-wide.

Go for it.
But we can't do any of this until we

hear from you.
For details, write RunTime Applications

Development, Ashton-Tate, 10150 West
Jefferson Boulevard, Culver City, CA 90230.

Or better yet, just call (213) dBASE
204-5570. And get what you
deserve today.

We'll tell the world.
With your license for the dBASE II

RunTime module, we provide labels that
identify your program as a dBASE II applica-
tion, and you get the benefit of all the
dBASE II marketing efforts.

ASHTON -WEB

©Ashton-Tate 1983.

Lifelines/TheSoftware Magazine, April 1983

Feature
Sliding into BDOS (Part III)

Michael Karas
The sequential philosophy generally limited file update to
appending to the end of the file, and read access to a
particular record had to read N-l records from the
beginning of the file prior to being able to read record N.
Random access file I/O within an operating system antici-
pates the requirements of non-sequential I/O by permit-
ting access to various records directly. Any record that was
previously written may be read upon demand. Likewise
the user/programmer may write any record desired. The
Digital Research CP/M operating system supports this
type of I/O in a powerful yet elegantly simple manner
through a set of four BDOS system functions. These calls
allow random access disk files to be implemented within
the standard CP/M compatible file structure.

Random File Structure Under CP/M 2.2
The structure of random files under the CP/M operating
system is much the same as that for sequential files. Part II
of this series (Lifelines, January 1982) described and illus-
trated the sequential structure in detail. The reader will
recall that CP/M treats disk data in fixed records of 128
bytes. These records are collected together into "groups"
that are stored on the disk as an allocated group. The disk
space reserved for a given file, in its directory entry, is
always marked, identified, and allocated in even multi-
ples of the 'allocation group size'.
I previously mentioned two older operating systems that
supported random file I/O within the confines of a pre-
allocated file. This system required that all of the space for
an "N" record file be reserved as contiguous disk space
even if the file only contained two records (-0 and -N).
Making a random access file bigger than the pre-allocated
size was virtually impossible. The CP/M Ver 2.2 random
file access system has overcome the problems described
above. A random file under CP/M contains only the num-
ber of allocated groups required to hold the stored rec-
ords. The holes between the defined records do not con-
sume unused disk space.
If a file under CP/M is created with only random record 0
of the file written then that file contains 128 bytes of real
data and consumes one allocation group of disk space.
The allocation group consumed also may contain other
adjacent random records to fill out the size of the group.
For instance, on single density 8" disks with a 1024 byte
allocation group size, a one record (-0) file would be able
to be written with additional record numbers 1 to 7 within
the same allocation group. Likewise if a single record file
was created with only record number 9 written, that file
would consume only one allocation group of disk space.
Additional record numbers 8, and 10 to 15 could then be
written without requiring additional disk space.

Random File I/O System Calls
Let us next investigate the five BDOS system calls that

(continued on next page)

The time has arrived to complete the third and final part of
this series on the operation of the CP/M BDOS as viewed
from the assembly language programmer's perspective.
Presently we will build upon the extensive treatment of
sequential files presented in Part II of the series to provide
a basis for understanding the CP/M 2.2 random file I/O
capability. Please note that functions of the BDOS pre-
sented here are specific to CP/M Versions 2.2 and 3.0.
Older CP/M systems using Version 1.4 do not directly sup-
port random access file I/O and as such are not compatible
with the programming examples presented below.

Why Random File I/O Anyway?
In the beginning of the CP/M era, sometime around the
release of Version 1.3 by Digital Research, small inexpen-
sive single-user micro processor systems were typically
used for simple-minded data processing applications.
Most computing operations were linear with respect to
the data handling by the CPU. Data entered from paper
tape, cassette, card readers, or human entry from a key-
board tended to be limited to sequential processing from
start to finish. The usage of such data by the computer in
data analysis, program compilation, or logging applica-
tions was also largely sequential. Finally the data output
operations based upon the needs of hard copy, backup,
and transmission from micro to micro were relegated to
sequential processing applications.
Anticipated applications of micro type computer hard-
ware by operating system designers, at that time, seemed
to dictate that the disk file structures of the operating sys-
tems should be sequential in nature. This was true for the
earliest releases of CP/M and Intel's ISIS II operating sys-
tem. Other simple floppy disk operating systems like
PERTEC's FDOS and MITS' Disk Extended Basic operat-
ing systems were also strictly sequential in the treatment
of disk file allocation and storage. However, these two sys-
tems permitted random record I/O within the bounds of
an already existing file provided the space to store the rec-
ords was previously pre-allocated as contiguous disk
space in the file structure. The process of random I/O was
then easy as a relative offset between the beginning record
number for the file and the offset desired within the file.
As the micro processor applications market opened up in
the late 1970's it seemed that new uses for computers were
being found weekly. It has gotton to the point that micro
processor computer users have a large array of very
sophisticated software packages to choose from and util-
ize in their business and hobby activities. The main thing
that can be pointed out about many of these packages is
that the processes they perform are hardly linear with
respect to the handling of data. Interactive programs like
word processors, data base managers, spelling checkers,
and spread sheet analysis programs may very well need to
be able to store or access data to/from a disk file in a man-
ner that cannot be handled in the old sequential manner.

Lifelines/The Software Magazine, Volume III, Number 11

CP/M supports for random I/O within files. The chart of
Figure 1 on page 34 details the look of a random access file
control block. Note that the file control block contains
three bytes at the end that are used to store the random
record number that will currently be accessed. The
random access system calls all utilize this field to
determine the portion of the file to access at read/write
time.

A CP/M random file may contain up to 64K records of 128
bytes numbered from 0 to 65535. Two bytes of the file con-
trol block hold this record number, rO as the low byte and
rl as the high byte. This provides accessability to records
up to a maximum file size of 8 megabytes. The r2 byte of
the file control block is not used except as the overflow or
carry out of the rl byte. If byte r2 ever contains a value that
is non-zero the record number is beyond the end of the 8
megabyte limit for the file.

To access a random file, it must first be opened in the nor-
mal manner with the "open" BDOS function call. In the
case of creating a new random file, the make file BDOS call
is sufficient in that the results of the make operation are
equivalent to the open function on a zero length file.

Read Random Record: Function 33.
This system call is made with the (DE) register pair point-
ing to a 36 byte file control block. Bytes r0-r2 are set up
with the random record to read. The BDOS then fetches
the addressed record from the file and places it in the call-
er's record buffer pointed to by the last set buffer address
function call. The r0-r2 fields of the file control block are
not changed as a result of the random read function such
that a subsequent random read operation would read the
same record. The random read function may return a
number of error codes as described below:

Error Code 00 - The random read function worked with-
out error and the user buffer contains the desired data.

Error Code 01 - The random read operation addresses a
record that is contained in a disk allocation group not allo-
cated to the file. This means that the group field number
slot of the appropriate extent of the file that should con-
tain the record is equal to 0.

Error Code 03 - The random read operation just requested
required that a different extent descriptor directory entry
had to be open for the impending operation, however pri-
or to opening the new extent the current extent could not
be closed due to disk read/only status or a disk change.

Error Code 04 - The random read operation just requested
required access to an extent of the file that does not exist
on the disk.

Error Code 06 - The random read operation just requested
required access to a record number beyond the bounds of
the disk drive, i.e., the disk drive is less than 8 megabytes
and the record requested is within an allocation group
beyond the end of the disk.

Write Random Record: Function 34.
This system call is made with the (DE) register pair point-
ing to a 36 byte file control block. Bytes r0-r2 are set up

with the random record to write. The BDOS then moves
the data in the caller's record buffer pointed to by the last
set buffer address function call to the addressed record in
the file. The r0-r2 fields of the file control block are not
changed as a result of the random write function such that
a subsequent random write operation would write the
same record. The random write function may return a
number of error codes as described below:

Error Code 00 - The random write function worked with-
out error and the user buffer contains the desired data.

Error Code 03 - The random write operation just request-
ed required that a different extent descriptor directory
entry had to be open for the impending operation, how-
ever prior to opening the new extent the current extent
could not be closed due to disk read/only status or a disk
change.

Error Code 05 - The random write operation just request-
ed required access to an extent of the file that does not
exist on the disk. In the process of creating the new extent
the disk directory was found to be full.

Error Code 06 - The random write operation just
requested required access to a record number beyond the
bounds of the disk drive, i.e., the disk drive is less than 8
megabytes and the record requested is within an
allocation group beyond the end of the disk.

WRITE RANDOM RECORD WITH ZERO FILL:
Function 40.

This system call is made with the (DE) register pair
pointing to a 36 byte file control block. Bytes r0-r2 are set
up with the random record to write. The BDOS then
moves the data in the caller's record buffer, pointed to by
the last set buffer address function call, to the addressed
record in the file. The r0-r2 fields of the file control block
are not changed as a result of the random write function
such that a subsequent random file operation would
access the same record. If the random write operation
caused a new allocation group to be allocated to the file
the other records of the same block are filled with zeros.
The random write with zero fill function may return a
number of error codes identical to those described for
function number 34 above.

COMPUTE FILE SIZE: Function 35

This system call determines the number of 128 byte
records in a file and sets the number of records into the rO
and rl bytes of the 36 byte file control block addressed by
the (DE) register pair. The returned size is a virtual size in
that if the file was created by random write operations and
the file contains 'holes" the file size function does not take
the holes into account. Another way of looking at this is to
think of this function as returning a record number that is
one greater than the maximum record number currently
in the file. If the file had no 'holes" or it had been written
in the conventional sequential fashion, then the file size
reported by this function is the real file size. This function
provides a convenient means of positioning a file at its end
so that subsequent sequential or random update may be
performed.

Lifelines/TheSoftware Magazine, April 198326

LXI D,RANDFCB ;MAKE A NEW FILE FOR TEST
MVI C,MAKE
CALL BDOS

SET RANDOM RECORD: Function 36:

The (DE) register pair is set to point to a 36 byte file control
block that has previously been used to reference a file in
the sequential mode. Upon reference with this system call
the rO to r2 fields are filled in with the random record
number that corresponds to the current file position, ie.
the BDOS simply computes the real current record
number as follows:

The current extent number is multiplied by 128, the
number of records per extent, and to this product is added
the numerical value of the CR field, current record in this
extent. The final result is placed into the r0-r2 fields of the
FCB.

Looking At Some Examples
The following simple assembly language program is
designed to write record numbers 0 and 143 into a file on
the disk. The write random function is used to write the
first record with all A's and the second record, - 143, with
all B's.

MVI A,A ;FILL FIRST RECORD WITH AS
CALL FILL ;GOFILL
LXI H,OOOOH ;SET RECORD NUMBER TO WRITE AS

;INTO
SHLDRR
LXI D,RANDFCB ;WRITE RECORD OF AS
MVI C,WRAND ;NORMAL WRITE RANDOM

;FUNCTION
CALL BDOS

MVI A/B' ;FILL NEXT RECORD WITH B'S
CALL FILL ;GOFILL
LXI H,143 ;SET RECORD NUMBER TO WRITE B'S

;INTO
SHLDRR
LXI D,RANDFCB ;WRITE RECORD OF B'S
MVI C,WRAND ;NORMAL WRITE RANDOM

;FUNCTION
CALL BDOS

LXI D,RANDFCB ;CLOSE JUST WRITTEN FILE
MVI C,CLOSE
CALL BDOS

;RANDOM RECORD I/O DEMONSTRATION FOR CP/M 2.2

; THIS FIRST LEVEL DEMONSTRATION IS DESIGNED TO
; SHOW HOW TO INITIALLY SET UP A FILE TO BE A RANDOM FILE
; AND TO WRITE TWO RECORDS INTO THE FILE SUCH THAT THE
; FIRST RECORD (RECORD NUMBER 0) AND THE SEVENTEENTH
; RECORD OF THE SECOND EXTENT (RECORD NUMBER 143) BOTH
; CONTAIN DATA. THE PURPOSE IS TO DEMONSTRATE THE
; RESULTING DISK DIRECTORY ENTRIES THAT RESULT FROM
; AN INCOMPLETE FILE. THIS DEMO PROGRAM DOES NO RANDOM
; WRITE ERROR CHECKING.

; SYSTEM LEVEL INTERFACE EQUATES

;BACK TO CCP BY IMMEDIATE RETURNRET

; SUBROUTINE TO FILL BUFFER WITH A PATTERN

; ENTRY WITH (A) CONTAINING BYTE TO FILL BUFFER WITH

FILL: LXI H, BUFFER ;POINT AT BUFFER FOR FILL
MVI B,128 ;FILL BYTE COUNTER

FILLP: MOV M,A ;PUT A BYTE INTO BUFFER
INX H ;BUMP POINTER
DCR B ;DECREMRNT BYTE COUNT
JNZ FILLP CONTINUE TILL BUFFER FULL
RET

BDOS EQU
MAKE EQU
SBADDR EQU
OPEN EQU
CLOSE EQU
DELETE EQU
RRAND EQU
WRAND EQU
WRANDF EQU

;SYSTEM INTERFACE VECTOR
;MAKE NEW FILE FUNCTION
;SET DISK BUFFER ADDR
;OPENFILE FUNCTION
;FILE CLOSE FUNCTION
;DELETE FILE FUNCTION
;READ RANDOM FUNCTION
;WRITE RANDOM FUNCTION
;WRITE RANDOM WITH 00 FILL

x8
;RANDOM FILE TEST DAIA AREA

RANDFCB: DB 00 ;USE CURRENT LOGGED DRIVE FOR
;TEST

DB 'RANDFILE' ;NAME OF FILE TO PLAY WITH
DB 'TST' ; . .AND THE EXTENSION NAME

EXT: DB 00,00,00,00 ;EXTENT, SI, S2, AND FCBSZ BYTES
DS 16 ;STORAGE FOR THE ALLOCATION

;NUMBER
CR: DS 1 ;CURRENT RECORD BYTE
RR: DS 2 ;RANDOM RECORD NUMBER (R0,Rl)

DS 1 ;RANDOM RECORD OVERFLOW BYTE
;(R2)

ORG 0100H ;START OF A PROGRAM
;ZERO BYTES OF THE FCB
;EXTENT FIELD
;CURRENT RECORD COUNT
;AND THE R2 FIELD
;ALSO ZERO RANDOM RECORD
;FIELED

XRA A
STA EXT
STA. CR
STA RR+2
LXI H,0000H

SHLDRR

LXI D,BUFFER ;SET DISK BUFFER ADDRESS
MVI C,SBADDR
CALL BDOS

LXI D,RANDFCB ;POINT AT OUR FCB
MVI C,DELETE ;ERASE TEST FILE IF IT ALREADY

CALL BDOS
;EXISTS

;RANDOM DISK I/O DAIA BUFFER

BUFFER: DS 128 ;ONE RECORD BUFFER

END

The above program was assembled and caused to run on
an empty single density disk in the default disk drive. The
following display shows how the directory upon the disk

(continued on next page)
Lifelines/The Software Magazine, Volume III, Number 11

looked after running the program. Notice that the file only
consumes two allocated groups. Due to the fact that this
was a single density disk with 1024 byte allocation groups
of 8 records each, then if record number 8 was subse-
quently written the directory entries would change to in-
clude an allocation block number in the second group
number slot of the first extent of the file.

Note from the directory display below that there is no
change in the appearance of the entries from the first ex-
ample. This time the only thing that changed was the data
in allocation group 3. Due to the second write this alloca-
tion group contains a sector of B's at GROUP = 03:07 with
the other seven sectors of the group now containing
zeroes from the zero fill operation. The function of zero fill
is to leave a clean slate on record numbers subsequently
read from the same allocation block. The BDOS is capable
of reporting unwritten record information for records that
correspond to group number slots in the directory entries
that contain a '00' byte indicating unallocated. However,
once a group is allocated for one record the BDOS cannot
determine if other sectors of that group have been written
or not. Thus an error function may be issued when creat-
ing a random access file for the first time. The program-
mer may then use a record of 128 zeroes to indicate that
the record is not used, as opposed to accidentally mistak-
ing the garbage data from un-initialized sectors written
without zero fill as real data.
G = 00:00, T = 2, S = l, PS = 1
00 0052414E 4446494C 45545354 00000001 *.RANDFILETST....*
10 02000000 00000000 00000000 00000000 **
20 0052414E 4446494C 45545354 01000010 *.RANDFILETST....*
30 00030000 00000000 00000000 00000000 **
40 E5E5E5E5 E5E5E5E5 E5E5E5E5 E5E5E5E5 *eeeeeeeeeeeeeeee*
50 E5E5E5E5 E5E5E5E5 E5E5E5E5 E5E5E5E5 *eeeeeeeeeeeeeeee*
60 E5E5E5E5 E5E5E5E5 E5E5E5E5 E5E5E5E5 *eeeeeeeeeeeeeeee*
70 E5E5E5E5 E5E5E5E5 E5E5E5E5 E5E5E5E5 *eeeeeeeeeeeeeeee*

The next example program is included here to show a
clever means of implementing arbitrary record selection
I/O within a file without resorting to random file I/O. The
intent is not to indicate that the following scheme is the
preferred method. The program below was developed
with the CP/M Ver 1.4 operating system in mind. However
the algorithm works fine with CP/M 2.2 as well. The tech-
nique used to play with random records by using sequen-
tial read and write operations is to manipulate the zcr"
field of a standard 33 byte file control block. The "cr" byte
is the only means that the BDOS uses to indicate the next
record to access. The programmer may change this byte
value to force the BDOS to go to any record within the cur-
rent extent.
If the first extent of a file is opened, the group allocation
values for that extent lie in the file control block. If the
technique of performing your own random I/O is done,
the code must access record numbers not to excede 07fh
without first closing the current extent and opening the
next. This can be done with either the conventional open
and close operations, or the programmer, when done
working with the current extent, may open the next auto-
matically by performing a dummy read of record 080H of
the current extent. The programming example below uses
the "roll your own" technique but does not anticipate a file
size greater than 16K (one extent size).
The program below is a skeleton structure of a .COM file
serialization procedure. The idea is to insert a six byte
serial number string into the target file PROG.COM on
drive B: . The serial number is inserted into the file at the
places specified by the labels in the table at the start of the

G = 00:00, T=2, S = 1,PS = 1
00 0052414E 4446494C 45545354 00000001 *RANDFILETST...*
10 02000000 00000000 00000000 00000000 *.*
20 0052414E 4446494C 45545354 01000010 *.RANDFILETST....*
30 00030000 00000000 00000000 00000000 *.*
40 E5E5E5E5 E5E5E5E5 E5E5E5E5 E5E5E5E5 *eeeeeeeeeeeeeeee*
50 E5E5E5E5 E5E5E5E5 E5E5E5E5 E5E5E5E5 *eeeeeeeeeeeeeeee*
60 E5E5E5E5 E5E5E5E5 E5E5E5E5 E5E5E5E5 ‘eeeeeeeeeeeeeeee*
70 E5E5E5E5 E5E5E5E5 E5E5E5E5 E5E5E5E5 *eeeeeeeeeeeeeeee*

The following two sector displays off the single density
disk show the A's and B's written by the program above.
All other sectors in the group numbers 02 and 03 were
empty, i.e., contained whatever data used to be there. This
brings up the subject of the write random with zero fill
function. A small segment of the first demonstration
program was changed to cause the second write operation
to be done with zero fill. The changed portion of the
program is shown below:

LXI D,RANDFCB ;WRITE RECORD OF AS
MVI C,WRAND ;NORMAL WRITE RANDOM

;FUNCTION
CALL BDOS

MVI A,3 ' ;FILL NEXT RECORD WITH B'S
CALL FILL ;GOFILL
LXI H,143 ;SET RECORD NUMBER TO WRITE B'S

;INTO
SHLDRR
LXI D,RANDFCB ;WRITE RECORD OF B'S
MVI C,WRANDF ;WRITE RANDOM ZERO FILL

;FUNCTION
CALL BDOS

LXI D,RANDFCB ;CLOSEIUST WRITTEN FILE

G = 02:00, T=2, S = 17, PS = 20
00 41414141 41414141 41414141 41414141 *AAAAAAAAAAAAAAAA*
10 41414141 41414141 41414141 41414141 *AAAAAAAAAAAAAAAA*
20 41414141 41414141 41414141 41414141 *AAAAAAAAAAAAAAAA*
30 41414141 41414141 41414141 41414141 *AAAAAAAAAAAAAAAA*
40 41414141 41414141 41414141 41414141 *AAAAAAAAAAAAAAAA*
50 41414141 41414141 41414141 41414141 *AAAAAAAAAAAAAAAA*
60 41414141 41414141 41414141 41414141 *AAAAAAAAAAAAAAAA*
70 41414141 41414141 41414141 41414141 *AAAAAAAAAAAAAAAA*

G = 03:07, T=3, S=6, PS=5
00 42424242 42424242 42424242
10 42424242 42424242 42424242
20 42424242 42424242 42424242
30 42424242 42424242 42424242
40 42424242 42424242 42424242
50 42424242 42424242 42424242
60 42424242 42424242 42424242
70 42424242 42424242 42424242

42424242 *BBBBBBBBBBBBBBBB*
42424242 *BBBBBBBBBBBBBBBB*
42424242 *BBBBBBBBBBBBBBBB*
42424242 *BBBBBBBBBBBBBBBB*
42424242 *BBBBBBBBBBBBBBBB*
42424242 *BBBBBBBBBBBBBBBB*
42424242 *BBBBBBBBBBBBBBBB*
42424242 *BBBBBBBBBBBBBBBB*

Lifelines/TheSoftware Magazine, April 198328

listing. These values are stripped out of the symbol table
that is generated at the assembly of the PROG.ASM file. If
the assembler does not generate a symbol table then the
label values may be pulled off the .PRN listing output.
The insert points are places within the 'to be serialized"
program where the programmer has determined that he
would like to place the serial number string. Within the
file itself, the labels point to the place where the string is to
be inserted with respect to run time load address. The real
file offset is 0100H bytes less. In addition, the scheme does
not insert all six bytes of the program serial number at
each location. The byte at each label address minus one
contains a value between 1 and 6 of the number of serial
number bytes that should actually be inserted at serializa-
tion time.

The list of label values in the program below is used to
build, at assembly time, a table of record numbers where
the specific serial number strings are to be inserted. This
table is then used to fill in the "cr" byte of the file control
block as each serial number is to be inserted. The table
also contains the byte offset within the record where the
insert point is to start. As each serial number is to be in-
serted the appropriate record is read, the number is in-
serted (with length specified by the value from the file rec-
ord just accessed), and the record is written back to the
disk. Sequential read and write operations are used for
both operations. Logic within the code listing below also
provides for the occurrence that the serial number string
may cross the end of the first record and flow into the next
record. In this case the first is rewritten followed by read-
ing of the next with the remainder of the insert proceeding
from the beginning of the second record.

Please note that the program example is given as a skele-
ton only and the serial number entry process, increment
process, and the disk I/O error exit points are left for the
reader/programmer to fill in with code of his own choos-
ing.

;DEFINE BASE EXECUTION AREA FOR THIS PROGRAM

START EQU 0100H

ORG START ;BASE OF EXECUTION AREA

;START UP HERE WITH PROGRAM INITIALIZATION AND
;DEFINE PROCEDURE TO FETCH IN SERIAL NUMBER TO INSERT INTO
;THEFILE

SERASK:

;ENTER APPROPRIATE CODE HERE TO PUT A SIX BYTE SERIAL
;NUMBER INTO VARIABLE "SERSTR"

;SERIAL NUMBER INSERT POINT PROCESSING

SERCOPY:
MVI C,RESET ;RESET DISK SYSTEM UPON INSERT
CALL
BDOS
LXI D,PROGFCB ;SET TO OPEN THE PROG.COM FILE
MVI C,OPEN
CALL BDOS
INR A ;CHECK IF OPEN ERROR
JNZ SERCP1 ;OPEN SO GO START WRITE

;PRINT ERROR MESSAGE HERE AS TO INDICATE THAT THE FILE
;?ROG.COM" IS NOT PRESENT ON DRIVE B:.

JMP SERASK ;IF ERROR BACK TO GET A NEW
; ..SERIAL NUMBER OR TO EXIT

SERCP1: MVI B,00H ;INDEX COUNTER FOR TABLE VALUES
SERIST: MOV

L,B
MVI H,00H
DAD H
LXI D,INSTAB
DAD D
MOV A,M
STA PROGFCB

+32
INX H
MOV C,M
PUSHB

;DOUBLE TO WORDS
;INT0 TABLE

;GET RECORD NUMBER FOR PLACE

;SET TO READ THIS RECORD

;GET BYTE LOCATION OF COUNTER

;PROGRAM SERIAL NUMBER INSERTION EQUATES
; EACH ADDRESS IS A VALUE INSIDE OF THE "PROG.COM"
; FILE THAT IS THE PLACE TO PUT THE SERIAL NUMBER.

SERA EQU 0132
SERB EQU 01E9
SERC EQU 0278
SERD EQU 039A
SERE EQU 06FF
SERF EQU 0732
SERG EQU OBBC
SERH EQU 0C08

LXI D,PROGFCB ;USE PROG FCB TO READ
MVI C,READ

;CP/M BDOS SYSTEM CALLS FUNCTION NUMBERS

CALL BDOS ;GO READ SECTOR
POP B
MOV L,C
MVI H,00H

;INDEX TO LENGTH

LXI D,080H
DAD D

;BASE OF DEFAULT BUFFER

MOV C,M ;GET LENGTH
INX H ;POINT TO NEXT BUFFER BYTE

(continued on next page)
29

BOOT EQU 0000H ;REBOOT LOCATION ENTRY POINT
BDOS EQU 0005H ;BDOS FUNCTION ENTRY POINT
RESET EQU 13 ;RESET DISK SYSTEM
OPEN EQU 15 ;OPEN FILE FUNCTION
CLOSE EQU 16 ;CLOSE FILE FUNCTION
DMAADR EQU 26 ;SET DATA BUFFER ADDRESS
READ EQU 20 ;READ SEQUENTIAL
WRITE EQU 21 ;WRITE SEQUENTIAL

Lifelines/The Software Magazine, Volume III, Number 11

LXI D,SERSTR ;POINT (DE) TO SERIAL LOCATION ;SERIAL NUMBER INSERTION POINT REFERENCE TABLE

MOVLP: MOV A,H ;SEE IF PAST THE END OF BUFFER

/

CPI 01H
JNZ SAMSEC
MVI H,00H
PUSHB
PUSHH
PUSHD
LXI H, PROGFCB

+32
DCR M
LXI D,PROGFCB
MVI C,WRITE
CALL BDOS
LXI D,PROGFCB
MVI C,READ
CALL BDOS
POP D
POP H
POP B

;STILL IN THE SAME SECTOR
;RESET TO NEXT SECTOR BASE

DECREASE RECORD FOR WRITE

;WRITE LAST SECTOR

;READ NEXT SECTOR

SAMSEC: PUSHB
LDAX D
MOV M,A
POP B
INX H
INX D
DCR C
JNZ MOVLP

;GET A SERIAL NUMBER BYTE
;AND SLAM INTO BUFFER

;DONE ALL BYTES HERE YET

/
PUSHB
LXI H, PROGFCB

+32

DCR M
LXI D,PROGFCB
MVI C,WRITE
CALL BDOS
POP B
INR B
LDA TABLEN
CMP B
JNC SERIST

;SET BACK CURRENT RECORD FOR
;WRITE

;REWRITE THIS SECTOR

;BUMP TABLE SCAN INDEX
;CHECK FOR DONE

;GO FOR NEXT TABLE ENTRY

INSTAB: DB
DB
DB
DB
DB
DB
DB

((SERA-0100H-l)/128)
((SERA-0100H-1) AND 07FH)
((SERB-0100H-l)/128)
((SERB-0100H-1) AND 07FH)
((SERC-0100H-l)/128)
((SERC-0100H-1) AND 07FH)
((SERD-0100H-l)/128)
((SERD-0100H-1) AND 07FH)
((SERE-0100H-l)/128)
((SERE-0100H-1) AND 07FH)
((SERF-0100H-l)/128)
((SERF-0100H-1) AND 07FH)
((SERG-0100H-l)/128)
((SERG-0100H-1) AND 07FH)
((SERH-0100H-l)/128)
((SERH-0100H-1) AND 07FH)

;RECORD NUMBER
;BYTE OFFSET
;RECORD NUMBER
;BYTE OFFSET
;RECORD NUMBER
;BYTE OFFSET
;RECORD NUMBER
;BYTE OFFSET
;RECORD NUMBER
;BYTE OFFSET
;RECORD NUMBER
;BYTE OFFSET
;RECORD NUMBER
;BYTE OFFSET
;RECORD NUMBER
;BYTE OFFSET

DB
DB
DB
DB
DB
DB
DB
DB
DB

TABLEN: DB (($-INSTAB)/2)-l ; NUMBER OF TABLE
;ENTRIES MINUS IFOR
;LOOPEASE

SERSTR: DS 10H ;PLACE TO KEEP BINARY
;SERIAL NUMBER

END

;...END OF SERIAL NUMBER INSERT PROGRAM

The next and final example is a fully functional program
that uses random record I/O under CP/M 2.2 to perform a
useful function. The program mixes up the records of a
file in an ordered yet bizarre way in order that the file
contents may be encoded to prevent its use until such time
that it is unscrambled. The unmixing process is also
performed by the program below. The records or "sectors"
of the file are mixed and unmixed in place on the disk in
that the disk file is not copied. Random access file I/O is
used to swap records directly. The comment block at the
beginning of the program listing contains an explanation
of the program intent and the record mixing algorithm
chosen. Operation of the program, should the reader
wish to utilize the encoding and decoding functions
provided, is also described in the listing.
This example program is presented as a working example
of random file I/O in use. Detailed description of the
internal workings of the program are beyond the scope of
this tutorial but may be inferred by studying the listing
and reading the rather prolific comment statements. For
readers that would like to avoid the aggravation of typing
in the source code for the program below or for the other
programs presented in this BDOS tutorial series, Part I in
Lifelines, November 1982 and Part II in Lifelines, January
1983, a machine readable copy of the source code files on
an eight inch single density diskette may be obtained from
Michael J. Karas, 2468 Hansen Court, Simi Valley,
California 93065. Please send diskettes preformatted,
labeled and in a returnable mailer of some sort. Also
include either stamps or money for return postage (no
postage meter tapes, those are accepted on date of
printing only) for your return package.

;PUT IN LOGIC HERE TO SPECIFY THE NEXT OF SEQUENTIAL SERIAL
; NUMBERS OR TO GO BACK TO THE TOP OF THE PROGRAM TO GET A
;NEW SERIAL NUMBER.

PARAMETER DATA AREA FOR SERIAL NUMBER PROGRAM

;?ROG.COM" FILE ACCESS CONTROL BLOCK

PROGFCB:
DB 'B-040H ;DISK DRIVE B: ALL THE TIME
DB TROG COM',0,0,0,0
DS 17 ;ALLOCATION SP*r b

Lifelines/TheSoftware Magazine, April 198330

LISTING FOR SECRET. ASM A RANDOM
I/O PROGRAM EXAMPLE

; EACH OF THE BYTES IN THE LIST WITH A MASK. THE MASK
; HAS A NUMERICAL VALUE EQUAL TO "NR-1" ROUNDED UP
; TO THE NEXT BIGGEST [(2 2 N) - 1] VALUE, IE IF THE FILE HAS 5
; RECORDS THE MASK IS 07H. IF THE FILE HAS 59 RECORDS THE
; MASK HAS A VALUE OF 3FH. THE LIST IS THEN SCANNED FOR
; VALUES THAT ARE GREATER THAN "NR-2'. EACH VALUE
; THAT IS GREATER THAN 'NR-2" IS DIVIDED BY TWO IGNOR
; ING THE REMAINDER. FINALLY EACH LIST VALUE IS IN
; CREMENTED BY ONE TO MAKE A REAL FILE READABLE
; RECORD NUMBER. THE LIST IS THEN USED AS A RECORD
; SCRAMBLE/UNSCRAMBLE LIST. FOR SCRAMBLING IT IS
; SCANNED FROM THE BEGINNING WHILE UNSCRAMBLING
; SCANS THE LIST FROM THE END. SCRAMBLING PROCEEDS AS
; FOLLOWS (THE UNSCRAMBLE PROCESS IS THE REVERSE): THE
; SECOND FILE RECORD IS NOW INTERCHANGED IN POSITION
; WITH THE RECORD POINTED BY THE FIRST NUMBER IN THE
; LIST. THE THIRD FILE RECORD IS INTERCHANGED WITH THE
; RECORD POINTED TO BY THE SECOND LIST VALUE. THIS PRO
; CESS CONTINUES UNTIL THE END OF THE LIST. DURING THE
; PROCESS OF INTERCHANGING THE FILE SECTORS IN THIS
; RATHER BIZARRE MANNER, EACH TIME A LIST VALUE IS
; FOUND TO HAVE A LEAST SIGNIFICANT BIT THAT IS EQUAL
; TO "1" THEN THAT RECORD HAS EACH BYTE XORTD WITH
; THE RECORD NUMBER.

WRITTEN BY:
MICHAEL J. KARAS

2468 HANSEN COURT
SIMI VALLEY, CA 93065
(805)527-7922

;RANDOM RECORD I/O DEMONSTRATION FOR CP/M 2.2

; THIS THIRD LEVEL DEMONSTRATION PROGRAM IS DESIGNED
; TO DEMONSTRATE RANDOM FILES BY DEVELOPING A
; 'NOT NECESSARILY PRACTICAL' ALGORITHM FOR EN-
; CODING A PROGRAM FILE ON A DISK. THE INTENT IS TO
; MAKE THE TRANSMISSION OF AN OBJECT FILE ARBITRARILY
; SCRAMBLED ON A 128 BYTE BY 128 BYTE RECORD BASIS
; SUCH THAT IF THE TRANSMITTED FILE, EITHER ON FLOPPY
; DISKETTE OR ON THE PHONE LINE WERE INTERCEPTED BY
; AN ILLICIT THIRD PARTY, THEN THE THIRD PARTY WOULD
; RECEIVE GARBAGE UNLESS HE HAD POSSESSION OF THE
; DECODING ALGORITHM. THIS PROGRAM WILL IMPLEMENT
; SUCH AN ALGORITHM IN BOTH AN ENCODING AND
; DECODING FORMAT. HERE IS THE ALGORITHM USED. (OB
; VIOUSLY THE FACT THAT THIS APPEARS IN THE
; PUBLIC IMAGE AS A MAGAZINE ARTICLE WILL PREVENT THE
; FOLLOWING ALGORITHM TO BE OF 'SECRET' USE).

; THE OPERATOR ENTERS THE COMMAND TO RUN THE PRO-
; GRAMAS:

A>SECRET filename.typ E<cr>

where filename.typ is the
file to encode. And "E"
indicates to encode the file ;SYSTEM LEVEL INTERFACE EQUATES

BDOS EQU
MAKE EQU
SBADDR EQU
OPEN EQU
CLOSE EQU
DELETE EQU
RRAND EQU
WRAND EQU
WRANDF EQU
PRINT EQU
FSIZE EQU
DEFCB EQU
DEFBUF EQU

;SYSTEM INTERFACE VECTOR
;MAKE NEW FILE FUNCTION
;SET DISK BUFFER ADDR
;OPEN FILE FUNCTION
;FILE CLOSE FUNCTION
;DELETE FILE FUNCTION
;READ RANDOM FUNCTION
;WRITE RANDOM FUNCTION
;WRITE RANDOM WITH 00 FILL
;PRINT STRING TILL $
;COMPUTE FILE SIZE FUNCTION
;DEFAULT FILE CONTROL BLOCK
;DEFAUIT BUFFER LOCATION

;or:

;A>SECRET filename.typ EXcr>

/

; where filename.typ is the
; file to decode. And "D"
; indicates to decode the file

; THE ENCODING PROCESS WRITES THE ENCODED FILE RIGHT
; IN PLACE WITHIN THE USER SPECIFIED FILE. NO MEANS IS US
; ED TO SPECIFY IN THE ENCODED FILE THAT IT IS ENCOD
; ED. THE DECODE PROCESS READS AND DECODES THE FILE
; RIGHT IN PLACE WITHIN THE USER SPECIFIED FILE NAME. THE
; ALGORITHM LEAVES THE FIRST RECORD OF THE FILE INTACT
; AND DOES NOT ENCODE THE PART OF A FILE BEYOND 128
; RECORDS IN SIZE. FOR FILES LARGER THAN 128 RECORDS THE
; FINAL RECORDS BEYOND THE 128TH ARE LEFT UNTOUCHED.
; THE BDOS IS CALLED TO DETERMINE THE SIZE OF THE FILE
; SO THE NUMBER OF RECORDS IN THE FILE ARE KNOWN. THIS
; NUMBER OF RECORDS WILL BE REFERRED TO HERE AS "NR'. IF
; "NR" IS GREATER THAN 128 THEN "NR" IS SET TO 128. THEN
; THE FIRST "NR-1" BYTES OF THE FIRST RECORD ARE READ SE
; QUENTIALLY TO MAKE A LIST OF ONE BYTE BINARY NUMBERS
; WITH A NUMBER OF ENTRIES EQUAL TO THE NUMBER OF
; RECORDS IN THE FILE MINUS ONE, UP TO A MAXIMUM OF 127
; NUMBERS. THIS LIST IS THEN PROCESSED TO CONVERT ALL
; OF THE NUMBERS IN THE LIST TO BE WITHIN THE RANGE OF 1
; TO "NR-T. THIS CONVERSION IS DONE BY FIRST "ANDING"

EXEC EQU 8000H

BOOT EQU 0000H

;EXECUTE SPOT FOR SMALL
;PROGRAM
;SYSTEM REBOOT ENTRY POINT

;ASCII CHARACTER DEFINITIONS

CR EQU ODH
LF EQU OAH

;CARRIAGE RETURN
;LINE FEED

ORG 0100H ;START OF A PROGRAM
LXI SP,STACK ;SETUP A STACK FOR EXECUTION
LXI D,SNGMSG

;PRINT SIGNON MESSAGE
MVI C,PRINT
CALL BDOS

(continued on next page)
31Lifelines/The Software Magazine, Volume in, Number 11

MVI C,PRINT ;PRINT FILE SIZE ERROR MESSAGE
LXI D,ERRM3
CALL BDOS
JMP BOOT

;CHECK IF THERE WAS A COMMAND LINE FILE NAME

~
~

~
> DEFCB +1 ;IF FIRST BYTE 20 THEN NO NAME

;IF NO FILE NAME PRINT ERRORCMDERR
DEFCB ;READ FIRST RECORD INTO LIST BUFFER
+ 17 ;GET OPTION CHARACTER
T ;CHECK FOR ENCODE
PROCESS ;GO TO PROCESS IF ENCODE
'D' ;CHECK IF DECODE
PROCESS ;GO PROCESS OF DECODE

READFST: LXI D,LIST ;SET DMA ADDRESS TO LIST BUFFER
MVI C,SBADDR
CALL BDOS
LXI H,0000H ;SET FIRST RECORD
SHLD DEFCB +33
XRA A
SIA DEFCB +35 ;CLEAR R2 BYTE
MVI C,RRAND ;READ RANDOM FIRST RECORD
LXI D, DEFCB
CALL BDOS ;NO NEED TO CHECK READ ERROR

BECAUSE WE KNOW THAT THESE

/
RECORDS EXIST

;HERE TO PROCESS LIST INTO A SET OF NUMBERS THAT FIT OUT
;FILE
;RECORD COUNT RANGE.

LDA NR ;FETCH NUMBER OF RECORDS
DCR A ;SET NR-1;
MVI B,0FFH ;INITIAL MASK VALUE
MVI C,07H ;NUMBER OF TIMES TO ROTATE FOR

;MASK

MKLP: RAL ;CHECK FOR ZERO BIT IN NR-1
JC HMSK ;EXIT WE HAVE OUR MASK ONE BIT

;FROM (A)
PUSH PSW
MOV A,B ;PUT A ZERO BIT INTO MASK
ORA A ;CLEAR CARRY
RAR ;PUTZEROIN
MOV B,A
POP PSW
DCR C ;DEBUMP SHIFT COUNT
JNZ MKLP

HMSK: ;HERE IF (B) HAS LIST MASK VALUE
LDA NR ;GET NUMBER OF VALUES IN LIST
DCR A
MOV C,A ;PUT LOOP COUNTER INTO (C)
MOV D,A ;SAVE NR-1 IN (D)
LXI H,LIST ;POINT AT LIST

LSTPROC:
MOV A,M ;GET A LIST BYTE
ANA B ;MASKTT
CMP D ;IS RESULT GREATER THAN NR-2
JC VALOK ;VALUEISOK
ORA A ;DTVIDE BY TWO IF TOO BIG
RAR

VALOK: INR A ;SET VALUES TP FOR REAL RECORD
;NUMBERS

MOV M,A ;PUT CONVERTED NUMBER INTO LIS'
;AGAIN

INX H ;BUMP LIST POINTER
DCR C ;DEC LOOP COUNTER
JNZ LSTPROC ;DO ALL BYTES OF LIST

CMDERR: LXI D,ERRM1
MVI C,PRINT

;PRINT ERROR MESSAGE

;EXIT IF NO FILE NAME OR OPTION
/

CALL BDOS
JMP BOOT

•HERE IF AN ENTRY FILE NAME AND A VALID OPTION

PROCES-
S: SIA OPTION

XRA A
SIA DEFCB

+ 12
SIA DEFCB

+32
SIA DEFCB

+35
LXI H,0000H
SHLD DEFCB

+33

;SAVE OPTION CHAR FOR LATER
REFERENCE
;SETUP FCB FOR OPEN

;ZERO EXTENT BYTE

;ZERO CURRENT RECORD BYTE

;ZEROR2BYTE

;ZERO RANDOM RECORD NUMBER
/

MVI C,OPEN
LXI D,DEFCB
CALL BDOS
INR A
JNZ FOUND

;OPEN FILE USER SPECIFIED
;USE DEFAULT FCB BUILT BY CCP
;GO ATTEMPT OPEN
;CHECK IF FOUND

/

MVI C,PRINT
LXI D,ERRM2
CALL BDOS
JMP BOOT

;PRINT NOT FOUND ERROR

;EXTT

;FOUND FILE SO LET'S NEXT COMPUTE ITS FILE SIZE

FOUND: LXI D,DEFCB ;THAT SAME FCB AGAIN
MVI C,FSIZE
CALL BDOS ;GET THE FILES SIZE IN RECORDS
LHLD DEFCB +33 ;GET SIZE OF THE FILE
MOV A,H ;CHECK IF GREATER THAN 128

RECORDS
ORA A
JNZ TOBIG
MOV A,L
ORA A ;CHECK IF FILE EMPTY OR ONLY ONE

RECORD
JZ TOSMALL
CPI 1
JZ TOSMALL
CPI 129
JC SIZINA ;WE HAVE SIZE IN (A)

TOBIG: MVI A,128 ;SET SIZE TO 128 DEFAULT
SIZINA: SIA NR ;SAVE NUMBER OF RECORDS

JMP READFST

TOSMALL:

;ENCODE/DECODE THE FILE HERE

ENCODE: LXI H,LIST ;KEEP A POINTER TO THE LIST

Lifelines/TheSoftware Magazine, April 198332

LDA OPTION ;IF OPTION IS T' WE GO FORWARD LXI D,DEFCB
CPI T
MVI A,1

JZ FORWA
LDA NR
DCR A
MOV E,A
DCR E
MVI D,0
DAD D

;DEFAULT FORWARD CURRENT
RECORD
;GO FORWARD
;INDEX TO END OF LIST FOR DECODE
;SET START RECORD FOR DECODE

;ZEROBASE INDEX
MOV

MVI C,WRAND
CALL BDOS
ORA A
JNZ DSKERR;
LXI D,BUF2
MVI C,SBADDR
CALL BDOS
LDA CURR
L,A
MVI H,00

;WRITE SWAP RECORD

;CHECK ERROR

;SET BUFFER 2 AS DMA ADDRESS

;WRITE CURRENT RECORD

;FORWA: SHLD LISTP
STA CURR

LDA NR
DCR A
STA CNTR

;SAVE LIST POINTER
;SET CURRENT RECORD NUMBER TO
START

;SET NUMBER OF SWAPS

SHLD DEFCB+33
LXI D,DEFCB
MVI C,WRAND
CALL BDOS
ORA A
JNZ DSKERR

;SET RECORD NUMBER

;WRITE THAT RECORD

;CHECK ERROR

ENCLP:

/

LXI D,BUF1
MVI C,SBADDR
CALL BDOS
LDA CURR
MOV L,A
MVI H,00
SHLD DEFCB+33
LXI D,DEFCB
MVI C,RRAND
CALL BDOS
ORA A
JNZ DSKERR

;SET BUFFER ONE AS DMA ADDRESS

;READ CURRENT RECORD

;SET RECORD NUMBER

;READ THAT RECORD

;CHECK ERROR

DECB:

INCF:

LDA CURR
MOV B,A
LHLD LISTP
;LDA OPTION
CPI T
JZ INCF

DCX H

DCR B
JMP PSVE
INX H
INR B

;FETCH LOOP PARMS

;CHECK OPTION

;IF ENCODE INCR FORWARD

DECREMENT DOWN THROUGH
;LOOP

;SAVE PARMS

LXI D,BUF2
MVI C,SBADDR
CALL BDOS

;SET BUFFER 2 AS DMA ADDRESS PSVE: SHLD LISTP
MOV A,B
STA CURR

;SAVE NEW LIST POSITION

LHLD LISTP
MOV L,M
MVI H,00
SHLD DEFCB+33
LXI D,DEFCB
MVI C,RRAND

;GET SWAP POSITION

;SET SWAP RECORD NUMBER

;READ SWAP RECORD

/

/

LDA CNTR
DCR A
STA CNTR
JNZ ENCLP

;FETCH LOOP COUNTER

;GO TO LOOP TO PROCESS MORE IF
;NOT DONE YET

CALL BDOS
ORA A ;CHECK ERROR ;HERE WE ARE DONE WRITING SO LET'S CLOSE UP AND GO HOME

JNZ DSKERR
z LXI D,DEFCB

LHLD LISTP ;IS SWAP RECORD AN ODD NUMB MVI C,CLOSE
MOV B,M ;SAVE XOR PATTERN IN (B) CALL BDOS
MOV A,M INR A ;CHECK ERROR CODE
RAR JZ DSKERR
JNC SWRT ;GO DO SWAP WRITE DIRECTLY IF ; MVI C,PRINT ;PRINT DONE MESSAGE

;EVEN LXI D,DONMSG
LDA OPTION ;WHICH BUFFER TO XOR CALL BDOS
LXI H,BUF2 ;DEFAULT FOR T' JMP BOOT ;EXIT
CPI T' 9

JZ INB2 ;USE BUFFER 2
LXI H,BUF1 ;IF DECODE USE BUFFER 1 ;EXIT POINT WITH ERROR MESSAGE IF THE DISK WRITE OPERATION

INB2: MVI C,128 ;BYTE COUNT OF XOR RESULTED IN AN ERROR
XORLP: MOV A,M ;GET A BYTE TO XOR

XRA B DSKERR: LXI D,ERRM4 ;PRINT GARBAGE FILE ERROR
MOV M,A ;PUT BYTE BACK MVI C,PRINT
INX H ;BUMP BUFFER POINTER FOR XORINC CALL BDOS
DCR C ;DEC BYTE COUNT JMP BOOT ;EXIT FOR THE POOR GUY
JNZ XORLP 9

;SWRT: LXI D,BUF1 ;SET BUFFER ONE AS DMA ADDRESS
MVI C,SBADDR ;PROGRAM OPERATIONAL MESSAGES
CALL BDOS
LHLD LISTP ;GET SWAP POSITION SNGMSG:
MOV L,M DB CR,LF,'MICRO RESOURCES Disk File Scramble and'
MVI H,00 DB CR, LF,Unscramble Utility Designed to Demonstrate'
SHLD DEFCB + 33 ;SET SWAP RECORD NUMBER DB CR,LF,'CP/M Ver 2.2 Random Record I/O. (1/24/82)','$'

33Lifelines/The Software Magazine, Volume III, Number 11

Figure 1. FILE CONTROL BLOCK DESCRIPTION
DONMSG:

;ERRM1:
DB
DB

CRzLF/File Processing Complete''$'
CR,LF/No File Name Specified or Improper Option','$'

ERRM2: DB CR,LF/Specified File Not Found','$'

ERRM3: DB CR,LF,'Cannot Process Files with 0 or 1 Record(s)','$'

ERRM4: DB CR,LF,Tile I/O Error, This Error Should NOT Normally'

/
DB CR,LF,'Happen, But the File is now Garbaged..

;PROGRAM DAIA STORAGE SECTION

OPTION: DS 1 ;PLACE TO STORE COMMAND LINE
;OPTIONCHAR

NR: DS 1 ;NUMBER OF RECORDS TO SWAP

CNTR: DS 1 ;ENCODE/DECODE LOOP COUNTER

CURR: DS 1 ;CURRENT SWAP SECTOR

LISTP: DS 2 ;LIST SCAN POINTER

LIST: DS 128 ;LIST BUFFER

BUF1: DS 128 ;DAIA BUFFER 1

BUF2: DS 128 ;DAIA BUFFER 2

DS 36
STACK EQU $;USER STACK AREA

dr fl f2 f8 tl t2 t3 ex si s2 rc d0 dn cr rO rl r2

00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 3435
where:

dr

fl...f8

tl,t2,t3

ex

si
s2

rc

dO. . .dn

cr

r0,rl,r2

drive code (0 - 16)
0 = > use default drive for file access
1 = > select drive A: for file access
2 => select drive B: for file access
.. . 16 = > select drive P: for file access
contain the files name in ASCII upper case
with high bits equal to zero.
contain the file type in ASCII upper case with
high bits normally equal zero, tn' denotes the
high bit of these bit positions.
tl' = 1 =>Read/Only file
t2' = 1 = > SYS file, no DIR list
contains the current extent number, normally
set to 00 by the user, but is in the range 0-31
during file I/O.
reserved for internal system use
reserved for internal system use, set to zero
on call to OPEN, MAKE, SEARCH system
calls.
record count for extent "ex," takes on values
Oto 128.
filled in by BDOS to indicate file group
numbers for this extent.
current record to read or write in a sequential
file operation. Normally set to zero by the
user upon initial access to a file.
optional random record number in the range
of 0 to 65535, with overflow to r2. rO/rl are a 16
bit value in low/high byte order.

END

; + + + .. .ENDOFFILE

KIBITS

LD MOTHER GREENE
WENT TO HER SCREEN

o FIND HER PooR pOGr
A Bo/VE

Lifelines/TheSoftware Magazine, April 198334

There now exist a number of interesting boards for the
Apple, e.g., an 8088 board, Digital Research's CP/M-3.0
softcard, etc. One wonders what the future holds for the
Apple?
Similarly the offerings for the IBM PC are growing at an
ever increasing rate.
IBM's latest offering, the XT, is an interesting enhance-
ment of the IBM PC. Basically the XT is equivalent to the
IBM PC but includes a number of significant enhance-
ments. Additional card slots are provided as well as a ten
megabyte hard disk. The operating system provided is
MS DOS 2.0 which has among other features a hierarchi-
cal directory. Those of you who have invested in the origi-
nal IBM PC need not be intimidated, however, as there are
not likely to be as many XTs in the near future as the origi-
nal IBM PC.
Those among you who are hardcore microcomputerists'
may be less than impressed by some aspects of the IBM
PC but the wealth of software that is emerging will more
then overshadow the alleged shortcomings suggested by
the purists among us.
In the area of portables the Otrona is clearly the top of the
line in today's market. This powerful machine is Z-80
based, very fast and offers substantial storage capacity. A
printer port and communication port are provided which
make hooking up the Hayes Smartmodem a piece of cake!
The machine sports a five inch monitor which is a mixed
blessing but the graphics provided more than offsets the
small screen size objections. Provision for the use of an ex-
ternal monitor has been provided as well. The machine
slides easily under an airplane seat and in fact one of the
recent editorals was typed in a Las Vegas airport on an
Otrona. (Airlines should provide outlets for future por-
table computer use in terminals).
The keyboard provided is the best we have tried on a por-
table and includes a number of important features such as
the ability to vary printer and communications port baud
rates, volume control for keyboard "click", screen inten-
sity, etc. A screen dump feature is provided to permit
dumping the screen to the printer, an alarm to permit set-
ting times for appointments etc., and finally a calculator
function is also supported.
If you are in the market for a portable machine give the
Otrona serious consideration. You will find them avail-
able at prices which are astounding bargains for the value.
The concept of the portable computer is not really appre-
ciated by the general public but once you have used one
you may well find that you won't travel without it!

Editorial (continued from page 2)
not data reduction. If you were to extrapolate the present
forecasts for spread sheets you would conclude that
within two years every man, woman and child on the face
of the earth would be using VisiCalc or equivalent. We
have reason to believe that this will not be the case.
Generic packages will continue to play a dominant role
supplemented by extensive use of graphics devices and
peripherals such as the mouse.
The advent of the Lisa, introduced by Apple, marks an i-
nteresting development which will undoubtedly effect all
micros. The concept is as simple as it is powerful. Instead
of relying solely upon the keyboard the user instead
"points" to objects called "ICONS" which are graphically
depicted on the console screen. Then the user instructs
the system by using metaphors to perform the various
functions.
Suppose that you need a calculator. You simply point,
using the mouse, to the ICON which is a graphical depic-
tion of a calculator.
A calculator then appears, virtually lifesize on the screen.
Using the mouse you point, i.e. move the cursor to the key
on the calculator that you are metaphorically pressing. As
various operations are carried out with the calculator the
results are displayed on the calculator display.
There are of course many more sophisticated uses of such
a machine but this simple example illustrates the concepts
involved. The buzz words to remember are "Lisa",
"mouse", "metaphor" and "icon". You'll be hearing and
seeing these terms over and over again from now on.
Mice , or mices, are rapidly becoming available for all of
the sixteen bit machines and together with VisiCorp's
VisiOn (pronounced vis-e-on) will offer much of the same
capability provided by Lisa for IBM PC's and IBM PC look-
a-likes. Incidently of the many IBM PC clones that we
have seen so far the Compaq is the closest to the IBMPC.
Watch out when selecting an IBM PC look-alike. Most Of
them exhibit subtle incompatiblities which will loom up
out of the swamp and bite you!!!
Microlog is offering an eight inch disk controller for the
IBM-PC as well as a new board called Baby Tex which is a
Z80 softcard for the Texas Instrument product called Pega-
sus which competes with the IBM-PC.
Apple lie's are selling well. We saw an interesting offering
at West Coast in the form of a seven slot motherboard for
Apple products. The manufacturer promise a graphics
board, keyboard, power supply, etc which will allow you
to configure your own Apple clone.

CWE PRoVoKCD P&VND A g>r MS OcJHf

forget the
AUmo

Remember
c e

Lifelines/The Software Magazine, Volume III, Number 11 35

Product Status
Reports

Residence and Income Property.
Functions include: conventional
mortgages, balloon payments, vari-
able rate mortgages, an interest only
loan, complex financing structures,
expense schedules, cash flows, tax
benefits, and internal rate of return.
The Individual Residence model
shows all expenses year by year, dis-
posable income after housing costs,
investment requirements and tax
benefits of ownership. The Income
Property model shows all cash flows,
a complete depreciation schedule
(1981 ACRS depreciation), operating
ratios, detailed investment basis
schedule, projection of future sales
price, and internal rate of return cal-
culation.

Requires 64K.
Available for 8" CP/M, IBM-PC,
Apple, Xerox 820, Victor 9000, Kayro,
and Osborne. Price $129.95

MemoPlan
Chang Labs
5300 Stevens Creek Blvd. Suite 200
San Jose, CA 95129
(408)246-8020

This concurrent word processing
program has a split screen feature for
work on two documents simulta-
neously, and has the ability to have
up to five documents available at a
time, sequentially with a keystroke.
It automatically recovers documents
following power outages and re-
trieves accidently deleted material.
MemoPlan matches all printers and
can switch from a dot-matrix printer
to a letter quality printer automati-
cally, with true proportional spacing
ability.

Requires 64K min. and two drives
with capacity of 150K each. Available
for 8- or 16-bit CP/M, PC DOS,
XENIX, and UNIX. Price: $195

tomatically computes the regular tax,
income averaging, alternative mini-
mum and preference taxes for each
year or alternative, and points out
which method yields the lowest tax.

Available for IBM PC and Apple.
Price: $295, annual updates: $50 to
$75

Solomon Series I:
General Accounting
Computech Group Inc.
Main Line Industrial Park
Lee Blvd.
Frazer, PA 19355
(215) 644-3344
This accounting package contains
the functions: Accounts Payable, Ac-
counts Receivable, General Ledger,
Payroll, Order Entry and Invoicing,
Cash Receipts and Dispursements,
and Fixed Assets management. It is
designed to be as foolproof as pos-
sible. Batch balancing techniques are
used whenever dollar amounts have
to be recorded, to double check the
accuracy of the amounts entered.
Requires Z/80 system, CP/M, 64K,
Two 8" disk drives. Price: $2595

The new software products and new
versions described below are
available from their authors,
computer stores, software pub-
lishers, and distributors. Infor-
mation has been derived from mate-
rial supplied by the authors or their
agents, and Lifelines/The Software
Magazine can assume no responsibil-
ity for its veracity. Software of inter-
est to our readers will be tested and
reviewed in depth at a later date.

New

Products
THE WEDGE____________________
Systems Plus, Inc.
1120 San Antonio Rd.
Palo Alto, CA 94303
(415) 969-7047
This electronic worksheet designed
for ease of use contains lots of docu-
mentation including: quick reference
cards, lessons cards, installation
manual, an 80 page applications
manual, and extensive HELP rou-
tines. It allows for split screen for-
mating, insertion of rows and col-
umns, format changes, and work-
sheet scrolling. The Wedge interfaces
with most word processors, sup-
ports 52 columns and 400 rows, and
utilizes the advanced features of
many display terminals. It has a
built-in calculator for use with for-
mulas that can be up to 60 characters
long. The formulas can combine
numbers with multiple references.
CP/M and MP/M compatible.

QUIKCALC REAL ESTATE
INVESTOR _____________________
Simple Soft, Inc.
480 Eage Dr. Suite 101
Elk Grove, IL 60007
(312) 364-0752

These financial templates are for use
with Supercalc or Visicalc and are de-

signed for novice users. They are
made up of two parts: Individual

Solomon Series II:
General Accounting
with Job Costing
Computech Group Inc.
(for address see above)
This accounting package is the same
as Solomon Series I except, for the
addition of Operations Management
and Productivity Management: Job
Costing.

Requirements are the same as Solo-
mon Series I. Price: $3495

SUPER ZAP_____________________
The Software Toolworks
15233 Ventura Blvd. Suite 1118
Sherman Oaks, CA 91403
This disk editor displays sectors in
hex, octal and ASCII formats. Sectors
may be accessed by file or by aboslute
sector number. Data may be changed
by moving the cursor to a byte and
typing directly on the display.
Available on 8" CP/M, Osborne,
Heath/Zenith, and Xerox/Kaypro.
Price: $26.95
Lifelines/TheSoftware Magazine, April 1983

Tax Mini-Miser
Sunrise Software, Inc
36 Palm Ct.
Menlo Park, CA 94025

This income tax planning software
program allows the user to compute
and compare the tax consequences of
alternative tax strategies and to do
projections for up to six years. It au-

disk system and not a floppy system
for it to operate correctly with PAS-3
Dental in CB-80.
2. We have added the ability to start
the Daily Charges and Receipts re-
port at any page in Version 1.74 of
PAS-3 Dental. This feature will be
added to all reports in future Ver-
sions of PAS-3.

3. We have added two new options to
the Pull Program. Option R allows
the operator to view all recalls estab-
lished for this acount. Option P gives
the operator a print-out of the full ac-
count record for the patient. Both
these options com up as a menu se-
lection in Pull and are self explana-
tory.

T/MAKER-III DEMO's
There is a special version of T/Maker
for CP/M80 which has no Save com-
mand and only permits printing on
the screen.

There is a special version of T/Maker
for the IBM which has no Save com-
mand and only permits printing on
the screen.

MicroTLX _______________________
Systems Plus
(for address see above)

This program turns your computer
into a Telex. All you need is MicroTLX
and a modem. MicroTLX provides
automatic dialing, automatic answer,
unattended operation and automatic
retry of unanswered calls. You are al-
lowed to send and receive Telex,
TWX, Mailgram, International Telex,
Cable and Telegram messages.

Requires CP/M and modem. Price:
$150

New

POWER__________________________
Version 3.3
COMPUTING!
2519 Greenwich San Francisco, CA
94123
This utility now includes a password
protection feature for sensitive data
file. POWER lets the user sort disk di-
rectories in four different ways, sub-
divide each user area into eight sub
areas to group programs and files, is-
sue automatic Control C to CP/M,
and optionally keep POWER and its
menu functions in control of CP/M at
all times. Other functions that have
been enhanced include: Copy, Re-
claim, Disk Test, Type Hex, Dump
Hex, Read Track and Sector, Rename,
Load, and Save. All of the functions
are explained in the new manual.

Available for CP/M-80, CP/M-86, and
MP/M. Price: $149 and $198 for MP/M
- send $35 with original disk for up-
date.
PAS-3 Update
Version 1.92 Medical:

1. A feature to print on patient's bill a
message on whether the insurance
company was billed for this charge
was added in version 1.91. This new
item was not range checked and it
was possible to format the bill so an
SB Error would occur. This has been
corrected.
2. The ability to specify the destina-
tion drive for Utility items, moves
patient to inactive disk, split the disk,
and copy the data files was added in
version 1.91. The drive input was not
automatically paded with a colon.
This has been corrected.
3. A new feature has been added to
the Daily Charges and Receipts re-
port. The user can now start the re-
port at any page. This allows stop-
ping the report and then restart
printing at the point where the report
was stopped. We will be adding this
feature to all reports in future ver-
sions of PAS-3 Medical.

Version 1.74 Dental:

1. TheCB-80 Version of PAS-3 Dental
running under MP/M would give an
EX Error when chaining from pro-
gram to program if MP/M had files
open on another drive. The CBASIC
Version did not give this error but
gave a warning message that disk re-
set denied because of open files. We
have modified PAS-3 to prev ent this
error EX when running on a hard
disk. You must run MP/M on a hard

Versions
SAPANA-MAIL-TRACK-I _________
Version 1.1
Sapana Micro Software
1305 South Rouse
Pittsburg, KS 66762

This mailing list program comes with
Sapana-LetterMerge program to
print form letters. Each address entry
can have the following items: Tele-
phone Number (10 digits), Entry
code (1-8 groups, 255 possible combi-
nations), Last name and first name
(total 30 chacracters), Company
name (30 characters), Street address
(30 characters), City (20 characters),
State (2 characters), and Zip (9 dig-
its). It keeps the mailing list in ZIP
code order as you enter the ad-
dresses. It can warn you of duplicate
entries and can handle up to 5000 ad-
dresses on a hard disk, 1100 on a sin-
gle-sided disk and 2200 on a double-
sided disk.
The Sapana-Mail-Track-I can handle
5 and 9 digit ZIP codes for domestic
addresses. It allows foreign and do-
mestic addresses in the same file. It
searches and sorts across any of the
items. Each label can belong to one or
more of the eight possible groups
and, can attach a 34-character long
message with every label. It can print
multiple copies (1-32767), one to four
across. It can repeat items needed to
be entered just once.

Requires IBM PC, 64K, and MS-
DOS. Price: $29.95 - send $5 with the
old version for the update.

OTHER NEW VERSIONS _________
1. MAGIC PRINT (NEC Spinwriters)
vl.32s
2. PLAN80 (CP/M-80, CP/M-86, IBM
PCDOS)v2.5
M/SORTvl.03
PLINK-II vl.16
MICROSTAT (for BASIC-80) v2.09d
muLISP-80 v2.15
muSIMP-80 v2.14,
Legal Time Accounting (UNIVAIR
Series 9000) vl.09
FPLv3.0

Bugs

Bugs
The following bug exists in PANEL-
-PC and PANEL-86 version 4.01.

Symptom - The "LOAD ALL" option
within the "BULK LOAD" facility in
program RANDATA results in incor-
rect data being loaded onto the file.

Solution - Use the "DISPLAY ALL"
option instead of the "LOAD ALL"
option. This process performs a simi-
lar function, but it runs slightly
slower because it displays each rec-
ord as it is loaded. It also works cor-
rectly. The problem will be corrected
in version 4.02 soon to be released.

LIFELIN
ES/The Softw

are M
agazine™

1651 Third Avenue, N
ew

 York, N
ew

 York 10028

■

Second C
lass Postage Paid

A
t N

ew
 York, N

.Y.

